ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational torques imply molecular gas inflow towards the nucleus of M51

87   0   0.0 ( 0 )
 نشر من قبل Miguel Querejeta
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transport of gas towards the centre of galaxies is critical for black hole feeding and, indirectly, it can control active galactic nucleus (AGN) feedback. We have quantified the molecular gas inflow in the central R<1kpc of M51 to be 1 Msun/yr, using a new gravitational torque map and the molecular gas traced by the PdBI Arcsecond Whirlpool Survey (PAWS). The nuclear stellar bar is responsible for this gas inflow. We have also used torque profiles to estimate the location of dynamical resonances, suggesting a corotation for the bar at R~20, and a corotation for the spiral at R~100. We demonstrate how important it is to correct 3.6um images for dust emission in order to compute gravitational torques, and we carefully examine further sources of uncertainty. Our observational measurement of gas inflow can be compared with nuclear molecular outflow rates and provide useful constraints for numerical simulations.

قيم البحث

اقرأ أيضاً

We present here the first of a series of papers aimed at better understanding the evolution and properties of giant molecular clouds (GMCs) in a galactic context. We perform high resolution, three-dimensional {sc arepo} simulations of an interacting galaxy inspired by the well-observed M51 galaxy. Our fiducial simulations include a non-equilibrium, time-dependent, chemical network that follows the evolution of atomic and molecular hydrogen as well as carbon and oxygen self-consistently. Our calculations also treat gas self-gravity and subsequent star formation (described by sink particles), and coupled supernova feedback. In the densest parts of the simulated interstellar medium (ISM) we reach sub-parsec resolution, granting us the ability to resolve individual GMCs and their formation and destruction self-consistently throughout the galaxy. In this initial work we focus on the general properties of the ISM with a particular focus on the cold star-forming gas. We discuss the role of the interaction with the companion galaxy in generating cold molecular gas and controlling stellar birth. We find that while the interaction drives large-scale gas flows and induces spiral arms in the galaxy, it is of secondary importance in determining gas fractions in the different ISM phases and the overall star-formation rate. The behaviour of the gas on small GMC scales instead is mostly controlled by the self-regulating property of the ISM driven by coupled feedback.
Molecular line images of 13CO, C18O, CN, CS, CH3OH, and HNCO are obtained toward the spiral arm of M51 at a 7 times 6 resolution with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). Distributions of the molecules averaged over a 300 pc scale are found to be almost similar to one another and to essentially trace the spiral arm. However, the principal component analysis shows a slight difference of distributions among molecular species particularly for CH3OH and HNCO. These two species do not correlate well with star-formation rate, implying that they are not enhanced by local star-formation activities but by galactic-scale phenomena such as spiral shocks. Furthermore, the distribution of HNCO and CH3OH are found to be slightly different, whose origin deserves further investigation. The present results provide us with an important clue to understanding the 300 pc scale chemical composition in the spiral arm and its relation to galactic-scale dynamics.
To investigate how molecular clouds react to different environmental conditions at a galactic scale, we present a catalogue of giant molecular clouds resolved down to masses of $sim 10$~M$_{odot}$ from a simulation of the entire disc of an interactin g M51-like galaxy and a comparable isolated galaxy. Our model includes time-dependent gas chemistry, sink particles for star formation and supernova feedback, meaning we are not reliant on star formation recipes based on threshold densities and can follow the physics of the cold molecular phase. We extract giant molecular clouds at a given timestep of the simulations and analyse their properties. In the disc of our simulated galaxies, spiral arms seem to act merely as snowplows, gathering gas and clouds without dramatically affecting their properties. In the centre of the galaxy, on the other hand, environmental conditions lead to larger, more massive clouds. While the galaxy interaction has little effect on cloud masses and sizes, it does promote the formation of counter-rotating clouds. We find that the identified clouds seem to be largely gravitationally unbound at first glance, but a closer analysis of the hierarchical structure of the molecular interstellar medium shows that there is a large range of virial parameters with a smooth transition from unbound to mostly bound for the densest structures. The common observation that clouds appear to be virialised entities may therefore be due to CO bright emission highlighting a specific level in this hierarchical binding sequence. The small fraction of gravitationally bound structures found suggests that low galactic star formation efficiencies may be set by the process of cloud formation and initial collapse.
A key uncertainty in galaxy evolution is the physics regulating star formation, ranging from small-scale processes related to the life-cycle of molecular clouds within galaxies to large-scale processes such as gas accretion onto galaxies. We study th e imprint of such processes on the time-variability of star formation with an analytical approach tracking the gas mass of galaxies (regulator model). Specifically, we quantify the strength of the fluctuation in the star-formation rate (SFR) on different timescales, i.e. the power spectral density (PSD) of the star-formation history, and connect it to gas inflow and the life-cycle of molecular clouds. We show that in the general case the PSD of the SFR has three breaks, corresponding to the correlation time of the inflow rate, the equilibrium timescale of the gas reservoir of the galaxy, and the average lifetime of individual molecular clouds. On long and intermediate timescales (relative to the dynamical timescale of the galaxy), the PSD is typically set by the variability of the inflow rate and the interplay between outflows and gas depletion. On short timescales, the PSD shows an additional component related to the life-cycle of molecular clouds, which can be described by a damped random walk with a power-law slope of $betaapprox2$ at high frequencies with a break near the average cloud lifetime. We discuss star-formation burstiness in a wide range of galaxy regimes, study the evolution of galaxies about the main sequence ridgeline, and explore the applicability of our method for understanding the star-formation process on cloud-scale from galaxy-integrated measurements.
It remains unclear what sets the efficiency with which molecular gas transforms into stars. Here we present a new VLA map of the spiral galaxy M51 in 33GHz radio continuum, an extinction-free tracer of star formation, at 3 scales (~100pc). We combine d this map with interferometric PdBI/NOEMA observations of CO(1-0) and HCN(1-0) at matched resolution for three regions in M51 (central molecular ring, northern and southern spiral arm segments). While our measurements roughly fall on the well-known correlation between total infrared and HCN luminosity, bridging the gap between Galactic and extragalactic observations, we find systematic offsets from that relation for different dynamical environments probed in M51, e.g. the southern arm segment is more quiescent due to low star formation efficiency (SFE) of the dense gas, despite having a high dense gas fraction. Combining our results with measurements from the literature at 100pc scales, we find that the SFE of the dense gas and the dense gas fraction anti-correlate and correlate, respectively, with the local stellar mass surface density. This is consistent with previous kpc-scale studies. In addition, we find a significant anti-correlation between the SFE and velocity dispersion of the dense gas. Finally, we confirm that a correlation also holds between star formation rate surface density and the dense gas fraction, but it is not stronger than the correlation with dense gas surface density. Our results are hard to reconcile with models relying on a universal gas density threshold for star formation and suggest that turbulence and galactic dynamics play a major role in setting how efficiently dense gas converts into stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا