ﻻ يوجد ملخص باللغة العربية
The aim of this paper is to establish convergence, properties and error bounds for the fully discrete solutions of a class of nonlinear systems of reaction-diffusion nonlocal type with moving boundaries, using the finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with a moving finite element method are investigated.
The aim of this paper is to establish the convergence and error bounds to the fully discrete solution for a class of nonlinear systems of reaction-diffusion nonlocal type with moving boundaries, using a linearized Crank-Nicolson-Galerkin finite eleme
The aim of this paper is the numerical study of a class of nonlinear nonlocal degenerate parabolic equations. The convergence and error bounds of the solutions are proved for a linearized Crank-Nicolson-Galerkin finite element method with polynomial
In this paper, we present a class of finite volume schemes for incompressible flow problems. The unknowns are collocated at the center of the control volumes, and the stability of the schemes is obtained by adding to the mass balance stabilization te
In this paper we design efficient quadrature rules for finite element discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive comput
The ubiquity of semilinear parabolic equations has been illustrated in their numerous applications ranging from physics, biology, to materials and social sciences. In this paper, we consider a practically desirable property for a class of semilinear