ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient calculation of cosmological neutrino clustering with both linear and non-linear gravity

43   0   0.0 ( 0 )
 نشر من قبل Steen Hannestad
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study in detail how neutrino perturbations can be followed in linear theory by using only terms up to $l=2$ in the Boltzmann hierarchy. We provide a new approximation to the third moment and demonstrate that the neutrino power spectrum can be calculated to a precision of better than $sim$ 5% for masses up to $sim$ 1 eV. The matter and CMB power spectra can be calculated far more precisely and typically at least a factor of a few better than with existing approximations. We then proceed to study how the neutrino power spectrum can be reliably calculated even in the presence of non-linear gravitational clustering by using the full non-linear gravitational potential derived from semi-analytic methods based on $N$-body simulations in the Boltzmann evolution hierarchy. Our results agree extremely well with results derived from $N$-body simulations.



قيم البحث

اقرأ أيضاً

In this paper the non-linear effect of massive neutrinos on cosmological structures is studied in a conceptually new way. We have solved the non-linear continuity and Euler equations for the neutrinos on a grid in real space in $N$-body simulations, and closed the Boltzmann hierarchy at the non-linear Euler equation using the stress and pressure perturbations from linear theory. By comparing with state-of-the art cosmological neutrino simulations, we are able to simulate the non-linear neutrino power spectrum very accurately. This translates into a negligible error in the matter power spectrum, and so our CONCEPT code is ideally suited for extracting the neutrino mass from future high precision non-linear observational probes such as Euclid.
We compare and contrast two different metric based formulations of non- linear cosmological perturbation theory: the MW2009 approach in [K. A. Malik and D. Wands, Phys. Rept. 475 (2009), 1.] following Bardeen and the recent approach of the paper KN20 10 [K. Nakamura, Advances in Astronomy 2010 (2010), 576273]. We present each formulation separately. In the MW2009 approach, one considers the gauge transformations of perturbative quantities, choosing a gauge by requiring that certain quantities vanish, rendering all other variables gauge invariant. In the KN2010 formalism, one decomposes the metric tensor into a gauge variant and gauge invariant part from the outset. We compare the two approaches in both the longitudinal and uniform curvature gauges. In the longitudinal gauge, we find that Nakamuras gauge invariant variables correspond exactly to those in the longitudinal gauge (i.e., for scalar perturbations, to the Bardeen potentials), and in the uniform curvature gauge we obtain the usual relationship between gauge invariant variables in the flat and longitudinal gauge. Thus, we show that these two approaches are equivalent.
We present an updated version of the HMcode augmented halo model that can be used to make accurate predictions of the non-linear matter power spectrum over a wide range of cosmologies. Major improvements include modelling of BAO damping in the power spectrum and an updated treatment of massive neutrinos. We fit our model to simulated power spectra and show that we can match the results with an RMS error of 2.5 per cent across a range of cosmologies, scales $k < 10,hmathrm{Mpc}^{-1}$, and redshifts $z<2$. The error rarely exceeds 5 per cent and never exceeds 16 per cent. The worst-case errors occur at $zsimeq2$, or for cosmologies with unusual dark-energy equations of state. This represents a significant improvement over previo
Redshift space distortion (RSD) observed in galaxy redshift surveys is a powerful tool to test gravity theories on cosmological scales, but the systematic uncertainties must carefully be examined for future surveys with large statistics. Here we empl oy various analytic models of RSD and estimate the systematic errors on measurements of the structure growth-rate parameter, $fsigma_8$, induced by non-linear effects and the halo bias with respect to the dark matter distribution, by using halo catalogues from 40 realisations of $3.4 times 10^8$ comoving $h^{-3}$Mpc$^3$ cosmological N-body simulations. We consider hypothetical redshift surveys at redshifts z=0.5, 1.35 and 2, and different minimum halo mass thresholds in the range of $5.0 times 10^{11}$ -- $2.0 times 10^{13} h^{-1} M_odot$. We find that the systematic error of $fsigma_8$ is greatly reduced to ~5 per cent level, when a recently proposed analytical formula of RSD that takes into account the higher-order coupling between the density and velocity fields is adopted, with a scale-dependent parametric bias model. Dependence of the systematic error on the halo mass, the redshift, and the maximum wavenumber used in the analysis is discussed. We also find that the Wilson-Hilferty transformation is useful to improve the accuracy of likelihood analysis when only a small number of modes are available in power spectrum measurements.
86 - Emilio Bellini ICC 2015
The scale of Baryon Acoustic Oscillations (BAO) imprinted in the matter power spectrum provides an almost-perfect standard ruler: it only suffers sub-percent deviations from fixed comoving length due to non-linear effects. We study the BAO shift in t he large Horndeski class of gravitational theories and compute its magnitude in momentum space using second-order perturbation theory and a peak-background split. The standard prediction is affected by the modified linear growth, as well as by non-linear gravitational effects that alter the mode-coupling kernel. For covariant Galileon models, we find a $14-45%$ enhancement of the BAO shift with respect to standard gravity and a distinct time evolution depending on the parameters. Despite the larger values, the shift remains well below the forecasted precision of next-generation galaxy surveys. Models that produce significant BAO shift would cause large redshift-space distortions or affect the bispectrum considerably. Our computation therefore validates the use of the BAO scale as a comoving standard ruler for tests of general dark energy models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا