ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of an Edge-on Debris Disk with a Dust Ring and an Outer Disk Wing-tilt Asymmetry

116   0   0.0 ( 0 )
 نشر من قبل Markus Kasper
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using VLT/SPHERE near-infrared dual-band imaging and integral field spectroscopy we discovered an edge-on debris disk around the 17,Myr old A-type member of the Scorpius-Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright and symmetrically placed knots at 0.3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bow in the disk, but we identify a pair of symmetric, hook-like features in both wings. Based on similar features in the Beta Pictoris disk we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen, inner belt which is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales.

قيم البحث

اقرأ أيضاً

As the earliest stage of planet formation, massive, optically thick, and gas rich protoplanetary disks provide key insights into the physics of star and planet formation. When viewed edge-on, high resolution images offer a unique opportunity to study both the radial and vertical structures of these disks and relate this to vertical settling, radial drift, grain growth, and changes in the midplane temperatures. In this work, we present multi-epoch HST and Keck scattered light images, and an ALMA 1.3 mm continuum map for the remarkably flat edge-on protoplanetary disk SSTC2DJ163131.2-242627, a young solar-type star in $rho$ Ophiuchus. We model the 0.8 $mu$m and 1.3 mm images in separate MCMC runs to investigate the geometry and dust properties of the disk using the MCFOST radiative transfer code. In scattered light, we are sensitive to the smaller dust grains in the surface layers of the disk, while the sub-millimeter dust continuum observations probe larger grains closer to the disk midplane. An MCMC run combining both datasets using a covariance-based log-likelihood estimation was marginally successful, implying insufficient complexity in our disk model. The disk is well characterized by a flared disk model with an exponentially tapered outer edge viewed nearly edge-on, though some degree of dust settling is required to reproduce the vertically thin profile and lack of apparent flaring. A colder than expected disk midplane, evidence for dust settling, and residual radial substructures all point to a more complex radial density profile to be probed with future, higher resolution observations.
We present high-resolution $^{12}$CO and $^{13}$CO 2-1 ALMA observations, as well as optical and near-infrared spectroscopy, of the highly-inclined protoplanetary disk around SSTC2D J163131.2-242627. The spectral type we derive for the source is cons istent with a $rm 1.2 , M_{odot}$ star inferred from the ALMA observations. Despite its massive circumstellar disk, we find little to no evidence for ongoing accretion on the star. The CO maps reveal a disk that is unusually compact along the vertical direction, consistent with its appearance in scattered light images. The gas disk extends about twice as far away as both the submillimeter continuum and the optical scattered light. CO is detected from two surface layers separated by a midplane region in which CO emission is suppressed, as expected from freeze-out in the cold midplane. We apply a modified version of the Topographically Reconstructed Distribution method presented by Dutrey et al. 2017 to derive the temperature structure of the disk. We find a temperature in the CO-emitting layers and the midplane of $sim$33 K and $sim$20 K at $rm R<200$ au, respectively. Outside of $rm R>200$ au, the disks midplane temperature increases to $sim$30 K, with a nearly vertically isothermal profile. The transition in CO temperature coincides with a dramatic reduction in the sub-micron and sub-millimeter emission from the disk. We interpret this as interstellar UV radiation providing an additional source of heating to the outer part of the disk.
We present new high resolution imaging of a light-scattering dust ring and halo around the young star HD 35841. Using spectroscopic and polarimetric data from the Gemini Planet Imager in H-band (1.6 microns), we detect the highly inclined (i=85 deg) ring of debris down to a projected separation of ~12 au (~0.12) for the first time. Optical imaging from HST/STIS shows a smooth dust halo extending outward from the ring to >140 au (>1.4). We measure the rings scattering phase function and polarization fraction over scattering angles of 22-125 deg, showing a preference for forward scattering and a polarization fraction that peaks at ~30% near the ansae. Modeling of the scattered-light disk indicates that the ring spans radii of ~60-220 au, has a vertical thickness similar to that of other resolved dust rings, and contains grains as small as 1.5 microns in diameter. These models also suggest the grains have a low porosity, are more likely to consist of carbon than astrosilicates, and contain significant water ice. The halo has a surface brightness profile consistent with that expected from grains pushed by radiation pressure from the main ring onto highly eccentric but still bound orbits. We also briefly investigate arrangements of a possible inner disk component implied by our spectral energy distribution models, and speculate about the limitations of Mie theory for doing detailed analyses of debris disk dust populations.
High-resolution observations of edge-on proto-planetary disks in emission from molecular species sampling different critical densities and formation pathways offer the opportunity to trace the vertical chemical and physical structures of protoplaneta ry disks. Based on analysis of sub-arcsecond resolution Atacama Large Millimeter Array (ALMA) archival data for the edge-on Flying Saucer disk (2MASS J16281370-2431391), we establish the vertical and radial differentiation of the disk CN emitting regions with respect to those of $^{12}$CO and CS, and we model the disk physical conditions from which the CN emission arises. We demonstrate that the disk $^{12}$CO (2-1), CN (2-1), and CS J=5-4 emitting regions decrease in scale height above the midplane, such that 12CO, CN, and CS trace layers of increasing density and decreasing temperature. We find that at radii > 100 au from the central star, CN emission arises predominantly from intermediate layers, while in the inner region of the disk, CN appears to arise from layers closer to the midplane. We investigate disk physical conditions within the CN emitting regions, as well as the ranges of CN excitation temperature and column density, via RADEX non-LTE modeling of the three brightest CN hyperfine lines. Near the disk midplane, where we derive densities nH2 ~10$^{7}$ cm$^{-3}$ at relatively low T$_{kin}$ (~12 K), we find that CN is thermalized, while sub-thermal, non-LTE conditions appear to obtain for CN emission from higher (intermediate) disk layers. We consider whether and how the particular spatial location and excitation conditions of CN emission from the Flying Saucer can be related to CN production that is governed, radially and vertically, by the degree of irradiation of the flared disk by X-rays and UV photons from the central star.
Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHa330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of 2. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90 deg and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHa330 disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا