ﻻ يوجد ملخص باللغة العربية
The decay $B^0to psi(2S) K^+pi^-$ is analyzed using $rm 3~fb^{-1}$ of $pp$ collision data collected with the LHCb detector. A model-independent description of the $psi(2S) pi$ mass spectrum is obtained, using as input the $Kpi$ mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the $psi(2S)pi$ mass spectrum can be described in terms of $Kpi$ reflections alone is rejected with more than 8$sigma$ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the $Z(4430)^-$ exotic state.
Resonant structures in $B^0topsipi^-K^+$ decays are analyzed by performing a four-dimensional fit of the decay amplitude, using $pp$ collision data corresponding to $rm 3 fb^{-1}$ collected with the LHCb detector. The data cannot be described with $K
We test the validity of the QCD sum rules applied to the meson $Z^+(4430)$, by considering a diquark-antidiquark type of current with $J^{P}=0^{-}$ and with $J^{P}=1^{-}$. We find that, with the studied currents, it is possible to find an acceptable
We perform a full amplitude analysis of B0 -> psi K+ pi- decays, with psi -> mu+ mu- or e+ e-, to constrain the spin and parity of the Z(4430)-. The J^P=1+ hypothesis is favored over the 0-, 1-, 2- and 2+ hypotheses at the levels of 3.4 sigma, 3.7 si
The X(3872) and Z(4430) are candidates of tetraquark state with a ccbar pair. We present results from Belle recently updated for the mass, branching fractions etc. in different production/decay processes of the X(3872). Results from a Dalitz analysis
We use QCD sum rules to study the recently observed meson $Z^+(4430)$, considered as a $D^*D_1$ molecule with $J^{P}=0^{-}$. We consider the contributions of condensates up to dimension eight and work at leading order in $alpha_s$. We get $m_Z=(4.40p