ﻻ يوجد ملخص باللغة العربية
Photoluminescence (PL) from femtosecond laser modified regions inside cubic-boron nitride (c-BN) was measured under UV and visible light excitation. Bright PL at the red spectral range was observed, with a typical excited state lifetime of $sim 4$~ns. Sharp emission lines are consistent with PL of intrinsic vibronic defects linked to the nitrogen vacancy formation (via Frenkel pair) observed earlier in high energy electron irradiated and ion-implanted c-BN. These, formerly known as the radiation centers, RC1, RC2, and RC3 have been identified at the locus of the voids formed by single fs-laser pulse. The method is promising to engineer color centers in c-BN for photonic applications.
Manipulation of magnetization with ultrashort laser pulses is promising for information storage device applications. The dynamic of the magnetization response depends on the energy transfer from the photons to the spins during the initial laser excit
Rydberg excitons are, with their ultrastrong mutual interactions, giant optical nonlinearities, and very high sensitivity to external fields, promising for applications in quantum sensing and nonlinear optics at the single-photon level. To design qua
Diamonds nitrogen vacancy (NV) center is an optically active defect with long spin coherence times, showing great potential for both efficient nanoscale magnetometry and quantum information processing schemes. Recently, both the formation of buried 3
We report a 2mu m ultrafast solid-state Tm:Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited~410fs pulses, with a spectral width~11.1nm at 2067nm. The maximum average output power is 270mW, at a pulse repetition frequenc
Surface plasmon polaritons in graphene couple strongly to surface phonons in polar substrates leading to hybridized surface plasmon-phonon polaritons (SPPPs). We demonstrate that a surface acoustic wave (SAW) can be used to launch propagating SPPPs i