ترغب بنشر مسار تعليمي؟ اضغط هنا

Co-spatial Long-slit UV/Optical Spectra of Ten Galactic Planetary Nebulae with HST/STIS II. Nebular Models, Central Star Properties and He+CNO Synthesis

125   0   0.0 ( 0 )
 نشر من قبل Richard Henry
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662 and PB6). Second, for the first time we are able to compare each objects observed nebular abundances of helium, carbon and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each objects progenitor mass. Important results include the following: 1) the mass range of our objects central stars matches well with the mass distribution of other PN central stars and white dwarfs; 2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge up; 3) most of our objects show negligible C enrichment, probably because their low masses preclude 3rd dredge-up; 4) C/O versus O/H for our objects appears to be inversely correlated, perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; 5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses <=1.5 Msun. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.

قيم البحث

اقرأ أيضاً

We present observations and initial analysis from an HST/STIS program to obtain the first co-spatial, UV-optical spectra of ten Galactic planetary nebulae (PNe). Our primary objective was to measure the critical emission lines of carbon and nitrogen with unprecedented S/N and spatial resolution over UV-optical range, with the ultimate goal of quantifying the production of these elements in low- and intermediate-mass stars. Our sample was selected from PNe with a near-solar metallicity, but spanning a broad range in N/O. This study, the first of a series, concentrates on the observations and emission-line measurements obtained by integrating along the entire spatial extent of the slit. We derived ionic and total elemental abundances for the seven PNe with the strongest UV line detections (IC~2165, IC~3568, NGC~2440, NGC~3242, NGC~5315, NGC~5882, and NGC~7662). We compare these new results with other recent studies of the nebulae, and discuss the relative merits of deriving the total elemental abundances of C, N, and O using ionization correction factors (ICFs) versus summed abundances. For the seven PNe with the best UV line detections, we conclude that summed abundances from direct diagnostics of ions with measurable UV lines gives the most accurate values for the total elemental abundances of C and N. In some cases where significant discrepancies exist between our abundances and those from other studies, we show that the differences can often be attributed to their use of fluxes that are not co-spatial. Finally, we examined C/O and N/O versus O/H and He/H in well-observed Galactic, LMC, and SMC PNe, and found that highly accurate abundances are essential for properly inferring elemental yields from their progenitor stars.
This paper represents the conclusion of a project that had two main goals: (1) to investigate to what extent planetary nebulae (PNe) are chemically homogeneous; and (2) to provide physical constraints on the central star properties of each PN. We acc omplished the first goal by using HST/STIS spectra to measure the abundances of seven elements in numerous spatial regions within each of six PN (IC 2165, IC 3568, NGC 2440, NGC 5315, NGC 5882, and NGC 7662). The second goal was achieved by computing a photoionization model of each nebula, using our observed emission line strengths as constraints. The major finding of our study is that the nebular abundances of He, C, N, O, Ne, S, and Ar are consistent with a chemically homogeneous picture for each PN. Additionally, we found through experimenting with three different density profiles (constant, Gaussian, and Gaussian with a power-law) that the determination of the central stars temperature and luminosity is only slightly sensitive to the profile choice. Lastly, post-AGB evolutionary model predictions of temperature and luminosity available in the literature were plotted along with the values inferred from the photoionization model analysis to yield initial and final mass estimates of each central star.
This project sought to consider two important aspects of the planetary nebula NGC 3242 using new long-slit HST/STIS spectra. First, we investigated whether this object is chemically homogeneous by dividing the slit into different regions spatially an d calculating the abundances of each region. The major result is that the elements of He, C, O, and Ne are chemically homogeneous within uncertainties across the regions probed, implying that the stellar outflow was well-mixed. Second, we constrained the stellar properties using photoionization models computed by CLOUDY and tested the effects of three different density profiles on these parameters. The three profiles tested were a constant density profile, a Gaussian density profile, and a Gaussian with a power law density profile. The temperature and luminosity were not affected significantly by the choice of density structure. The values for the stellar temperature and luminosity from our best fit model are 89.7$^{+7.3}_{-4.7}$kK and log(L/Lsol)=3.36$^{+0.28}_{-0.22}$, respectively. Comparing to evolutionary models on an HR diagram, this corresponds to an initial and final mass of 0.95$^{+0.35}_{-0.09}$ Msol and 0.56$^{+0.01}_{-0.01}$ Msol, respectively.
Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae, but central star spectroscopic information is available for only 13% of them. Aims. We undertook a spectroscopic survey of central stars of PNe to identify the ir spectral types. Methods. We performed spectroscopic observations, at low resolution, with the 2-m telescope at CASLEO, Argentina. Results. We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars.
Fast line-driven stellar winds play an important role in the evolution of planetary nebulae. We provide global hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal veloc ities, and emergent fluxes from basic stellar parameters. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for $T_rm{eff}approx10,$kK) and fade away at the white dwarf cooling track (below $T_rm{eff}=105,$kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung-Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around $20,$kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about $T_rm{eff}=40-50,$kK. On the other hand, the terminal velocity increases from about a few hundreds of $rm{km},rm{s}^{-1}$ to a few thousands of $rm{km},rm{s}^{-1}$ during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا