ﻻ يوجد ملخص باللغة العربية
The problem on identification of a limit of an ordinary differential equation with discontinuous drift that perturbed by a zero-noise is considered in multidimensional case. This problem is a classical subject of stochastic analysis. However the multidimensional case was poorly investigated. We assume that the drift coefficient has a jump discontinuity along a hyperplane and is Lipschitz continuous in the upper and lower half-spaces. It appears that the behavior of the limit process depends on signs of the normal component of the drift at the upper and lower half-spaces in a neighborhood of the hyperplane, all cases are considered.
In this paper we study zero-noise limits of $alpha -$stable noise perturbed ODEs which are driven by an irregular vector field $A$ with asymptotics $% A(x)sim overline{a}(frac{x}{leftvert xrightvert })leftvert xrightvert ^{beta -1}x$ at zero, where $
In this paper we solve a selection problem for multidimensional SDE $d X^varepsilon(t)=a(X^varepsilon(t)) d t+varepsilon sigma(X^varepsilon(t)), d W(t)$, where the drift and diffusion are locally Lipschitz continuous outside of a fixed hyperplane
In the late seventies, Clark [In Communication Systems and Random Process Theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977) (1978) 721-734, Sijthoff & Noordhoff] pointed out that it would be natural for $pi_t$, the solution of the stocha
Here we will use results of Cox, Durrett, and Perkins for voter model perturbations to study spatial evolutionary games on $Z^d$, $dge 3$ when the interaction kernel is finite range, symmetric, and has covariance matrix $sigma^2I$. The games we consi
We study the limit behavior of differential equations with non-Lipschitz coefficients that are perturbed by a small self-similar noise. It is proved that the limiting process is equal to the maximal solution or minimal solution with certain probabili