ﻻ يوجد ملخص باللغة العربية
We examine the physics of the early universe when Majorana neutrinos (electron neutrino, muon neutrino, tau neutrino) possess transition magnetic moments. These extra couplings beyond the usual weak interaction couplings alter the way neutrinos decouple from the plasma of electrons/positrons and photons. We calculate how transition magnetic moment couplings modify neutrino decoupling temperatures, and then use a full weak, strong, and electromagnetic reaction network to compute corresponding changes in Big Bang Nucleosynthesis abundance yields. We find that light element abundances and other cosmological parameters are sensitive to magnetic couplings on the order of 10^{-10} Bohr magnetons. Given the recent analysis of sub-MeV Borexino data which constrains Majorana moments to the order of 10^{-11} Bohr magnetons or less, we find that changes in cosmological parameters from magnetic contributions to neutrino decoupling temperatures are below the level of upcoming precision observations.
In the primordial Universe, neutrino decoupling occurs only slightly before electron-positron annihilations, leading to an increased neutrino energy density with order $10^{-2}$ spectral distortions compared to the standard instantaneous decoupling a
We calculate the evolution of the early universe through the epochs of weak decoupling, weak freeze-out and big bang nucleosynthesis (BBN) by simultaneously coupling a full strong, electromagnetic, and weak nuclear reaction network with a multi-energ
We compute radiative corrections to nuclear reaction rates that determine the outcome of the Big-Bang Nucleosynthesis (BBN). Any nuclear reaction producing a photon with an energy above $2m_e$ must be supplemented by the corresponding reaction where
Big bang nucleosynthesis (BBN) is affected by the energy density of a primordial magnetic field (PMF). For an easy derivation of constraints on models for PMF generations, we assume a PMF with a power law (PL) distribution in wave number defined with
We study neutrino process nucleosynthesis in massive stars using newly calculated cross sections, an expanded reaction network, and complete and self-consistent models of the progenitor star. We reevaluate the production of light isotopes from abunda