ﻻ يوجد ملخص باللغة العربية
As an extension to the Laplace and Sumudu transforms the classical Natural transform was proposed to solve certain fluid flow problems. In this paper, we investigate q-analogues of the q-Natural transform of some special functions. We derive the q-analogues of the q-integral transform and further apply to some general special functions such as : the exponential functions, the q-trigonometric functions, the q-hyperbolic functions and the Heaviside Function. Some further results involving convolutions and differentiations are also obtained.
In this article we consider mathematical fundamentals of one method for proving inequalities by computer, based on the Remez algorithm. Using the well-known results of undecidability of the existence of zeros of real elementary functions, we demonstr
We prove an analogue of Chernoffs theorem for the Laplacian $ Delta_{mathbb{H}} $ on the Heisenberg group $ mathbb{H}^n.$ As an application, we prove Ingham type theorems for the group Fourier transform on $ mathbb{H}^n $ and also for the spectral projections associated to the sublaplacian.
An important class of fractional differential and integral operators is given by the theory of fractional calculus with respect to functions, sometimes called $Psi$-fractional calculus. The operational calculus approach has proved useful for understa
The area of fractional calculus (FC) has been fast developing and is presently being applied in all scientific fields. Therefore, it is of key relevance to assess the present state of development and to foresee, if possible, the future evolution, or,
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $