ترغب بنشر مسار تعليمي؟ اضغط هنا

On Chudnovsky-Based Arithmetic Algorithms in Finite Fields

93   0   0.0 ( 0 )
 نشر من قبل Robert Rolland
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Thanks to a new construction of the so-called Chudnovsky-Chudnovsky multiplication algorithm, we design efficient algorithms for both the exponentiation and the multiplication in finite fields. They are tailored to hardware implementation and they allow computations to be parallelized while maintaining a low number of bilinear multiplications. We give an example with the finite field ${mathbb F}_{16^{13}}$.



قيم البحث

اقرأ أيضاً

We propose a Recursive Polynomial Generic Construction (RPGC) of multiplication algorithms in any finite field $mathbb{F}_{q^n}$ based on the method of D.V. and G.V. Chudnovsky specialized on the projective line. They are usual polynomial interpolati on algorithms in small extensions and the Karatsuba algorithm is seen as a particular case of this construction. Using an explicit family of such algorithms, we show that their bilinear complexity is quasi-linear with respect to the extension degree n, and we give a uniform bound for this complexity. We also prove that the construction of these algorithms is deterministic and can be done in polynomial time. We give an asymptotic bound for the complexity of their construction.
The Chudnovsky and Chudnovsky algorithm for the multiplication in extensions of finite fields provides a bilinear complexity which is uniformly linear whith respect to the degree of the extension. Recently, Randriambololona has generalized the method , allowing asymmetry in the interpolation procedure and leading to new upper bounds on the bilinear complexity. We describe the effective algorithm of this asymmetric method, without derivated evaluation. Finally, we give examples with the finite field $F_{16^{13}}$ using only rational places, $F_{4^{13}}$ using also places of degree two and $F_{2^{13}}$ using also places of degree four.
We propose several constructions for the original multiplication algorithm of D.V. and G.V. Chudnovsky in order to improve its scalar complexity. We highlight the set of generic strategies who underlay the optimization of the scalar complexity, accor ding to parameterizable criteria. As an example, we apply this analysis to the construction of type elliptic Chudnovsky$^2$ multiplication algorithms for small extensions. As a case study, we significantly improve the Baum-Shokrollahi construction for multiplication in $mathbb F_{256}/mathbb F_4$.
We indicate a strategy in order to construct bilinear multiplication algorithms of type Chudnovsky in large extensions of any finite field. In particular, by using the symmetric version of the generalization of Randriambololona specialized on the ell iptic curves, we show that it is possible to construct such algorithms with low bilinear complexity. More precisely, if we only consider the Chudnovsky-type algorithms of type symmetric elliptic, we show that the symmetric bilinear complexity of these algorithms is in $O(n(2q)^{log_q^*(n)})$ where $n$ corresponds to the extension degree, and $log_q^*(n)$ is the iterated logarithm. Moreover, we show that the construction of such algorithms can be done in time polynomial in $n$. Finally, applying this method we present the effective construction, step by step, of such an algorithm of multiplication in the finite field $F_{3^{57}}$.
We study the relationship between the local and global Galois theory of function fields over a complete discretely valued field. We give necessary and sufficient conditions for local separable extensions to descend to global extensions, and for the l ocal absolute Galois group to inject into the global absolute Galois group. As an application we obtain a local-global principle for the index of a variety over such a function field. In this context we also study algebra
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا