ﻻ يوجد ملخص باللغة العربية
Random walks including non-nearest-neighbor jumps appear in many real situations such as the diffusion of adatoms and have found numerous applications including PageRank search algorithm, however, related theoretical results are much less for this dynamical process. In this paper, we present a study of mixed random walks in a family of fractal scale-free networks, where both nearest-neighbor and next-nearest-neighbor jumps are included. We focus on trapping problem in the network family, which is a particular case of random walks with a perfect trap fixed at the central high-degree node. We derive analytical expressions for the average trapping time (ATT), a quantitative indicator measuring the efficiency of the trapping process, by using two different methods, the results of which are consistent with each other. Furthermore, we analytically determine all the eigenvalues and their multiplicities for the fundamental matrix characterizing the dynamical process. Our results show that although next-nearest-neighbor jumps have no effect on the leading sacling of the trapping efficiency, they can strongly affect the prefactor of ATT, providing insight into better understanding of random-walk process in complex systems.
We report results of a Wang-Landau study of the random bond square Ising model with nearest- ($J_{nn}$) and next-nearest-neighbor ($J_{nnn}$) antiferromagnetic interactions. We consider the case $R=J_{nn}/J_{nnn}=1$ for which the competitive nature o
We study discrete solitons in zigzag discrete waveguide arrays with different types of linear mixing between nearest-neighbor and next-nearest-neighbor couplings. The waveguide array is constructed from two layers of one-dimensional (1D) waveguide ar
We calculate the local Green function for a quantum-mechanical particle with hopping between nearest and next-nearest neighbors on the Bethe lattice, where the on-site energies may alternate on sublattices. For infinite connectivity the renormalized
It is well known that for linear Gaussian channels, a nearest neighbor decoding rule, which seeks the minimum Euclidean distance between a codeword and the received channel output vector, is the maximum likelihood solution and hence capacity-achievin
We use the $k$-nearest neighbor probability distribution function ($k$NN-PDF, Banerjee & Abel 2021) to assess convergence in a scale-free $N$-body simulation. Compared to our previous two-point analysis, the $k$NN-PDF allows us to quantify our result