ﻻ يوجد ملخص باللغة العربية
Based on the observation that the skyrmion in Skyrme theory can be viewed as a dressed monopole, we show that the skyrmions have two independent topology, the baryon topology $pi_3(S^3)$ and the monopole topology $pi_2(S^2)$. With this we propose to classify the skyrmions by two topological numbers $(m,n)$, the monopole number $m$ and the shell (radial) number $n$. In this scheme the popular (non spherically symmetric) skyrmions are classified as the $(m,1)$ skyrmions but the spherically symmetric skyrmions are classified as the $(1,n)$ skyrmions, and the baryon number $B$ is given by $B=mn$. Moreover, we show that the vacuum of the Skyrme theory has the structure of the vacuum of the Sine-Gordon theory and QCD combined together, which can also be classified by two topological numbers $(p,q)$. This puts the Skyrme theory in a totally new perspective.
Recently it has been pointed out that the skyrmions carry two independent topology, the baryon topology and the monopole topology. We provide more evidence to support this. In specific, we prove that the baryon number $B$ can be decomposed to the mon
A lagrangian which describes interactions between a soliton and a background field is derived for sigma models whose target is a symmetric space. The background field modifies the usual moduli space approximation to soliton dynamics in two ways: by i
We study the variance and kurtosis of the net-baryon number in a fluid dynamical model for heavy-ion collisions. It is based on an effective chiral model with dilatons for the strong coupling regime of QCD. Taking into account spinodal instabilities,
We consider the semiclassical rigid-body quantization of Skyrmion solutions of mass numbers B = 4, 6, 8, 10 and 12. We determine the allowed quantum states for each Skyrmion, and find that they often match the observed states of nuclei. The spin and
This report, prepared for the Community Planning Study - Snowmass 2013 - summarizes the theoretical motivations and the experimental efforts to search for baryon number violation, focussing on nucleon decay and neutron-antineutron oscillations. Prese