ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological perturbations in coherent oscillating scalar field models

80   0   0.0 ( 0 )
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials $V(phi)=lambda vertphivert^{n}/n$. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained $c_{text{eff}}^2 = omega=(n-2)/(n+2)$ with $omega$ the effective equation of state. We also obtain the first order correction in $k^2/omega_{text{eff}}^2$, when the wavenumber $k$ of the perturbations is much smaller than the background oscillation frequency, $omega_{text{eff}}$. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for $deltaphi$; and for sub-Hubble modes, exploiting Floquets theorem.

قيم البحث

اقرأ أيضاً

We derive non-relativistic equations of motion for the formation of cosmological structure in a Scalar Field Dark Matter (SFDM) model corresponding to a complex scalar field endowed with a quadratic scalar potential. Starting with the full equations of motion written in the Newtonian gauge of scalar perturbations, we separate out the fields involved into relativistic and non-relativistic parts, and find the equations of motion for the latter that can be used to build up the full solution. One important assumption will also be that the SFDM field is in the regime of fast oscillations, under which its behavior is exactly that of cold dark matter. The resultant equations are quite similar to the Schrodinger-Poisson system of Newtonian boson stars plus relativistic leftovers. We exploit that similarity to show how to simulate, with minimum numerical effort, the formation of cosmological structure in SFDM models and others alike, and ultimately prove their viability as complete dark matter models.
We constrain cosmological models where the primordial perturbations have both an adiabatic and a (possibly correlated) cold dark matter (CDM) or baryon isocurvature component. We use both a phenomenological approach, where the primordial power spectr a are parametrized with amplitudes and spectral indices, and a slow-roll two-field inflation approach where slow-roll parameters are used as primary parameters. In the phenomenological case, with CMB data, the upper limit to the CDM isocurvature fraction is alpha<6.4% at k=0.002Mpc^{-1} and 15.4% at k=0.01Mpc^{-1}. The median 95% range for the non-adiabatic contribution to the CMB temperature variance is -0.030<alpha_T<0.049. Including the supernova (or large-scale structure, LSS) data, these limits become: alpha<7.0%, 13.7%, and -0.048<alpha_T< 0.042 (or alpha<10.2%, 16.0%, and -0.071<alpha_T<0.024). The CMB constraint on the tensor-to-scalar ratio, r<0.26 at k=0.01Mpc^{-1}, is not affected by the nonadiabatic modes. In the slow-roll two-field inflation approach, the spectral indices are constrained close to 1. This leads to tighter limits on the isocurvature fraction, with the CMB data alpha<2.6% at k=0.01Mpc^{-1}, but the constraint on alpha_T is not much affected, -0.058<alpha_T<0.045. Including SN (or LSS) data, these limits become: alpha< 3.2% and -0.056<alpha_T<0.030 (or alpha<3.4% and -0.063<alpha_T<-0.008). When all spectral indices are close to each other the isocurvature fraction is somewhat degenerate with the tensor-to-scalar ratio. In addition to the generally correlated models, we study also special cases where the perturbation modes are uncorrelated or fully (anti)correlated. We calculate Bayesian evidences (model probabilities) in 21 different cases for our nonadiabatic models and for the corresponding adiabatic models, and find that in all cases the data support the pure adiabatic model.
133 - Marc Kamionkowski 2021
Calculations of the evolution of cosmological perturbations generally involve solution of a large number of coupled differential equations to describe the evolution of the multipole moments of the distribution of photon intensities and polarization. However, this Boltzmann hierarchy communicates with the rest of the system of equations for the other perturbation variables only through the photon-intensity quadrupole moment. Here I develop an alternative formulation wherein this photon-intensity quadrupole is obtained via solution of two coupled integral equations -- one for the intensity quadrupole and another for the linear-polarization quadrupole -- rather than the full Boltzmann hierarchy. This alternative method of calculation provides some physical insight and a cross-check for the traditional approach. I describe a simple and efficient iterative numerical solution that converges fairly quickly. I surmise that this may allow current state-of-the-art cosmological-perturbation codes to be accelerated.
We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f(T) an satzes that lead to a theory free of instabilities. Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of motion, and we study the growth of matter overdensities. We show that f(T) gravity with f(T) constant coincides with General Relativity, both at the background as well as at the first-order perturbation level. Applying our formalism to the power-law model we find that on large subhorizon scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ from LCDM cosmology. Finally, examining the linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) f(T) gravity is free of massive gravitons.
As we are entering the era of precision cosmology, it is necessary to count on accurate cosmological predictions from any proposed model of dark matter. In this paper we present a novel approach to the cosmological evolution of scalar fields that eas es their analytic and numerical analysis at the background and at the linear order of perturbations. We apply the method to a scalar field endowed with a quadratic potential and revisit its properties as dark matter. Some of the results known in the literature are recovered, and a better understanding of the physical properties of the model is provided. It is shown that the Jeans wavenumber defined as $k_J = a sqrt{mH}$ is directly related to the suppression of linear perturbations at wavenumbers $k>k_J$. We also discuss some semi-analytical results that are well satisfied by the full numerical solutions obtained from an amended version of the CMB code CLASS. Finally we draw some of the implications that this new treatment of the equations of motion may have in the prediction for cosmological observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا