ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic effects and primordial non-Gaussianity in the matter density fluctuation

104   0   0.0 ( 0 )
 نشر من قبل Jaiyul Yoo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jaiyul Yoo




اسأل ChatGPT حول البحث

We present the third-order analytic solution of the matter density fluctuation in the proper-time hypersurface of nonrelativistic matter flows by solving the nonlinear general relativistic equations. The proper-time hypersurface provides a coordinate system that a local observer can set up without knowledge beyond its neighborhood, along with physical connections to the local Newtonian descriptions in the relativistic context. The initial condition of our analytic solution is set up by the curvature perturbation in the comoving gauge, clarifying its impact on the nonlinear evolution. We compute the effective non-Gaussian parameters due to the nonlinearity in the relativistic equations. With proper coordinate rescaling, we show that the equivalence principle is respected and the relativistic effect vanishes in the large-scale limit.



قيم البحث

اقرأ أيضاً

Next-generation cosmological surveys will observe larger cosmic volumes than ever before, enabling us to access information on the primordial Universe, as well as on relativistic effects. We consider forthcoming 21cm intensity mapping surveys (SKAO) and optical galaxy surveys (DESI and Euclid), combining the information via multi-tracer cross-correlations that suppress cosmic variance on ultra-large scales. In order to fully incorporate wide-angle effects and redshift-bin cross-correlations, together with lensing magnification and other relativistic effects, we use the angular power spectra, $C_ell(z_i,z_j)$. Applying a Fisher analysis, we forecast the expected precision on $f_{rm NL}$ and the detectability of lensing and other relativistic effects. We find that the full combination of two pairs of 21cm and galaxy surveys, one pair at low redshift and one at high redshift, could deliver $sigma(f_{rm NL})sim 1.5$, detect the Doppler effect with a signal-to-noise ratio $sim$8 and measure the lensing convergence contribution at $sim$2% precision. In a companion paper, we show that the best-fit values of $f_{rm NL}$ and of standard cosmological parameters are significantly biased if the lensing contribution is neglected.
Next-generation galaxy and 21cm intensity mapping surveys will rely on a combination of the power spectrum and bispectrum for high-precision measurements of primordial non-Gaussianity. In turn, these measurements will allow us to distinguish between various models of inflation. However, precision observations require theoretical precision at least at the same level. We extend the theoretical understanding of the galaxy bispectrum by incorporating a consistent general relativistic model of galaxy bias at second order, in the presence of local primordial non-Gaussianity. The influence of primordial non-Gaussianity on the bispectrum extends beyond the galaxy bias and the dark matter density, due to redshift-space effects. The standard redshift-space distortions at first and second order produce a well-known primordial non-Gaussian imprint on the bispectrum. Relativistic corrections to redshift-space distortions generate new contributions to this primordial non-Gaussian signal, arising from: (1)~a coupling of first-order scale-dependent bias with first-order relativistic observational effects, and (2)~linearly evolved non-Gaussianity in the second-order velocity and metric potentials which appear in relativistic observational effects. Our analysis allows for a consistent separation of the relativistic `contamination from the primordial signal, in order to avoid biasing the measurements by using an incorrect theoretical model. We show that the bias from using a Newtonian analysis of the squeezed bispectrum could be $Delta fnlsim 5$ for a Stage IV H$alpha$ survey.
Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatu res in the Cosmic Microwave Background and in the Large-Scale Structure of the Universe.
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianityis perhaps the most robust theoretical prediction of models that explain the observed Universe; itis necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale.
The statistical properties of the primordial perturbations contain clues about the origins of those fluctuations. Although the Planck collaboration has recently obtained tight constraints on primordial non-gaussianity from cosmic microwave background measurements, it is still worthwhile to mine upcoming data sets in effort to place independent or competitive limits. The ionized bubbles that formed at redshift z~6-20 during the Epoch of Reionization are seeded by primordial overdensities, and so the statistics of the ionization field at high redshift are related to the statistics of the primordial field. Here we model the effect of primordial non-gaussianity on the reionization field. The epoch and duration of reionization are affected as are the sizes of the ionized bubbles, but these changes are degenerate with variations in the properties of the ionizing sources and the surrounding intergalactic medium. A more promising signature is the power spectrum of the spatial fluctuations in the ionization field, which may be probed by upcoming 21 cm surveys. This has the expected 1/k^2 dependence on large scales, characteristic of a biased tracer of the matter field. We project how well upcoming 21 cm observations will be able to disentangle this signal from foreground contamination. Although foreground cleaning inevitably removes the large-scale modes most impacted by primordial non-gaussianity, we find that primordial non-gaussianity can be separated from foreground contamination for a narrow range of length scales. In principle, futuristic redshifted 21 cm surveys may allow constraints competitive with Planck.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا