ترغب بنشر مسار تعليمي؟ اضغط هنا

Profile Stochasticity in PSR J1909-3744

76   0   0.0 ( 0 )
 نشر من قبل Lindley Lentati
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend the recently introduced Bayesian framework `Generative Pulsar Timing Analysis to incorporate both pulse jitter (high frequency variation in the arrival time of the pulse) and epoch to epoch stochasticity in the shape of the pulse profile. This framework allows for a full timing analysis to be performed on the folded profile data, rather than the site arrival times as is typical in most timing studies. We apply this extended framework both to simulations, and to an 11 yr, 10 cm data set for PSR J1909$-$3744. Using simulations, we show that temporal profile variation can induce timing noise in the residuals that when performing a standard timing analysis is highly covariant with the signal expected from a gravitational wave (GW) background. When working in the profile domain, these variations are de-correlated from the expected GW signal, resulting in significant improvement in the obtained upper limits. Using the PSR J1909$-$3744 data set from the Parkes Pulsar Timing Array project, we find significant evidence for systematic high-frequency profile variation resulting from non-Gaussian noise in the oldest observing system, but no evidence for either detectable pulse jitter, or low-frequency profile shape variation. Using our profile domain framework we therefore obtain upper limits on a red noise process with a spectral index of $gamma = 13/3$ of $1times10^{-15}$, consistent with previously published limits.

قيم البحث

اقرأ أيضاً

103 - N. A. Webb , D. Leahy , S. Guillot 2019
Pulsating thermal X-ray emission from millisecond pulsars can be used to obtain constraints on the neutron star equation of state, but to date only five such sources have been identified. Of these five millisecond pulsars, only two have well constrai ned neutron star masses, which improve the determination of the radius via modelling of the X-ray waveform. We aim to find other millisecond pulsars that already have well constrained mass and distance measurements that show pulsed thermal X-ray emission in order to obtain tight constraints on the neutron star equation of state. The millisecond pulsar PSR~J1909--3744 has an accurately determined mass, M = 1.54$pm$0.03 M$_odot$ (1 $sigma$ error) and distance, D = 1.07$pm$0.04 kpc. We analysed {em XMM-Newton} data of this 2.95 ms pulsar to identify the nature of the X-ray emission. We show that the X-ray emission from PSR~J1909--3744 appears to be dominated by thermal emission from the polar cap. Only a single component model is required to fit the data. The black-body temperature of this emission is kT=0.26ud{0.03}{0.02} keV and we find a 0.2--10 keV un-absorbed flux of 1.1 $times$ 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$ or an un-absorbed luminosity of 1.5 $times$ 10$^{30}$ erg s$^{-1}$. Thanks to the previously determined mass and distance constraints of the neutron star PSR~J1909--3744, and its predominantly thermal emission, deep observations of this object with future X-ray facilities should provide useful constraints on the neutron star equation of state.
We report on a high-precision timing analysis and an astrophysical study of the binary millisecond pulsar, PSR J1909$-$3744, motivated by the accumulation of data with well improved quality over the past decade. Using 15 years of observations with th e Nanc{c}ay Radio Telescope, we achieve a timing precision of approximately 100 ns. We verify our timing results by using both broad-band and sub-band template matching methods to create the pulse time-of-arrivals. Compared with previous studies, we improve the measurement precision of secular changes in orbital period and projected semi-major axis. We show that these variations are both dominated by the relative motion between the pulsar system and the solar system barycenter. Additionally, we identified four possible solutions to the ascending node of the pulsar orbit, and measured a precise kinetic distance of the system. Using our timing measurements and published optical observations, we investigate the binary history of this system using the stellar evolution code MESA, and discuss solutions based on detailed WD cooling at the edge of the WD age dichotomy paradigm. We determine the 3-D velocity of the system and show that it has been undergoing a highly eccentric orbit around the centre of our Galaxy. Furthermore, we set up a constraint over dipolar gravitational radiation with the system, which is complementary to previous studies given the mass of the pulsar. We also obtain a new limit on the parameterised post-Newtonian parameter, $alpha_1<2.1 times 10^{-5}$ at 95 % confidence level, which is fractionally better than previous best published value and achieved with a more concrete method.
Propagation effects in the interstellar medium and intrinsic profile changes can cause variability in the timing of pulsars, which limits the accuracy of fundamental science done via pulsar timing. One of the best timing pulsars, PSR J1713+0747, has gone through two ``dip events in its dispersion measure time series. If these events reflect real changes in electron column density, they should lead to multiple imaging. We show that the events are are well-fit by an underdense corrugated sheet model, and look for associated variability in the pulse profile using principal component analysis. We find that there are transient pulse profile variations, but they vary in concert with the dispersion measure, unlike what is expected from lensing due to a corrugated sheet. The change is consistent in shape across profiles from both the Greenbank and Arecibo radio observatories, and its amplitude appears to be achromatic across the 820 MHz, 1.4 GHz, and 2.3 GHz bands, again unlike expected from interference between lensed images. This result is puzzling. We note that some of the predicted lensing effects would need higher time and frequency resolution data than used in this analysis. Future events appear likely, and storing baseband data or keeping multiple time-frequency resolutions will allow more in-depth study of propagation effects and hence improvements to pulsar timing accuracy.
PSR J1713+0747 is one of the most precisely timed pulsars in the international pulsar timing array experiment. This pulsar showed an abrupt profile shape change between April 16, 2021 (MJD 59320) and April 17, 2021 (MJD 59321). In this paper, we repo rt the results from multi-frequency observations of this pulsar carried out with the upgraded Giant Metrewave Radio Telescope (uGMRT) before and after the event. We demonstrate the profile change seen in Band 5 (1260 MHz - 1460 MHz) and Band 3 (300 MHz - 500 MHz). The timing analysis of this pulsar shows a disturbance accompanying this profile change followed by a recovery with a timescale of $sim 159$ days. Our data suggest that a model with chromatic index as a free parameter is preferred over models with combinations of achromaticity with DM bump or scattering bump. We determine the frequency dependence to be $sim u^{+1.34}$.
The Double Pulsar, PSR J$0737$$-$$3039$A/B, is a unique system in which both neutron stars have been detected as radio pulsars. As shown in Ferdman et al., there is no evidence for pulse profile evolution of the A pulsar, and the geometry of the puls ar was fit well with a double-pole circular radio beam model. Assuming a more realistic polar cap model with a vacuum retarded dipole magnetosphere configuration including special relativistic effects, we create synthesized pulse profiles for A given the best-fit geometry from the simple circular beam model. By fitting synthesized pulse profiles to those observed from pulsar A, we constrain the geometry of the radio beam, namely the half-opening angle and the emission altitude, to be $30^circ$ and $10$ neutron star radii, respectively. Combining the observational constraints of PSR J$0737$$-$$3039$A/B, we are able to construct the full three-dimensional orbital geometry of the Double Pulsar. The relative angle between the spin axes of the two pulsars ($Delta_S$) is estimated to be ($138^circ pm 5^circ$) at the current epoch and will likely remain constant until tidal interactions become important in $sim$$85$ Myr, at merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا