ﻻ يوجد ملخص باللغة العربية
We consider lepton flavor violating Higgs decay, specifically $h to mutau$, in a leptoquark model. We introduce two scalar leptoquarks with the $SU(3)_c times SU(2)_L times U(1)_Y$ quantum numbers, $(3,2,7/6)$ and $(3,2,1/6)$, which do not generate the proton decay within renormalizable level. They can mix with each other by interactions with the standard model Higgs. The constraint from the charged lepton flavor violating process, $tau^{-} to mu^{-} gamma$, is very strong when only one leptoquark contribution is considered. However, we demonstrate that significant cancellation is possible between the two leptoquark contributions. We show that we can explain the CMS (ATLAS) excess in $h to mu tau$. We also show that muon $(g-2)$ anomaly can also be accommodated.
We show that a single vector leptoquark can explain both the muon $g-2$ anomaly recently measured by the Muon g-2 experiment at Fermilab, and the various $B$ decay anomalies, including the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies which have been rec
We construct a model to explain the muon anomalous magnetic moment, without considering any lepton flavor violations, in the modular $A_4$ symmetry. We have investigated a predictive radiative seesaw model including dark matter candidate at favorable
In this paper, we summarize phenomenology in lepton portal dark matter (DM) models, where DM couples to leptons and extra leptons/sleptons. There are several possible setups: complex/real scalar DM and Dirac/Majorana fermion DM. In addition, there ar
The discrepancy between the muon $g-2$ measurement and the Standard Model prediction points to new physics around or below the weak scale. It is tantalizing to consider the loop effects of a heavy axion (in the general sense, also known as an axion-l
The discrepancy between the measured value and the Standard Model prediction of the muon anomalous magnetic moment is one of the most important issues in the particle physics. It is known that introducing a mediator boson X with the $mu tau$ lepton f