ﻻ يوجد ملخص باللغة العربية
In this paper we prove a convexity and fibre-connectedness theorem for proper maps constructed by Thimms trick on a connected Hamiltonian $G$-space $M$ that generate a Hamiltonian torus action on an open dense submanifold. Since these maps only generate a Hamiltonian torus action on an open dense submanifold of $M$, convexity and fibre-connectedness do not follow immediately from Atiyah-Guillemin-Sternbergs convexity theorem, even if $M$ is compact. The core contribution of this paper is to provide a simple argument circumventing this difficulty. In the case where the map is constructed from a chain of subalgebras we prove that the image is given by a list of inequalities that can be computed explicitly. This generalizes the famous example of Gelfand-Zeitlin systems on coadjoint orbits introduced by Guillemin and Sternberg. Moreover, we prove that if such a map generates a completely integrable torus action on an open dense submanifold of $M$, then all its fibres are smooth embedded submanifolds.
In this article, we prove a Legendrian Whitney trick which allows for the removal of intersections between codimension-two contact submanifolds and Legendrian submanifolds, assuming such a smooth cancellation is possible. This technique is applied to
This work is devoted to a systematic study of symplectic convexity for integrable Hamiltonian systems with elliptic and focus-focus singularities. A distinctive feature of these systems is that their base spaces are still smooth manifolds (with bound
M. Brion proved a convexity result for the moment map image of an irreducible subvariety of a compact integral Kaehler manifold preserved by the complexification of the Hamiltonian group action. V. Guillemin and R. Sjamaar generalized this result to
In 1940, Luis Santalo proved a Helly-type theorem for line transversals to boxes in R^d. An analysis of his proof reveals a convexity structure for ascending lines in R^d that is isomorphic to the ordinary notion of convexity in a convex subset of R^
Let $X$ be a polarized abelian variety over a field $K$. Let $O$ be a ring with an involution that acts on $X$ and this action is compatible with the polarization. We prove that the natural action of $O$ on $(X times X^t)^4$ is compatible with a certain principal polarization.