ترغب بنشر مسار تعليمي؟ اضغط هنا

The Shape of Saturns Huygens Ringlet Viewed by Cassini ISS

129   0   0.0 ( 0 )
 نشر من قبل Joseph Spitale
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new model for the shape of the prominent eccentric ringlet in the gap exterior to Saturns B-ring is developed based on Cassini imaging observations taken over about 8 years. Unlike previous treatments, the new model treats each edge of the ringlet separately. The Keplerian component of the model is consistent with results derived from Voyager observations, and $m=2$ modes forced by the nearby Mimas 2:1 Lindblad resonance are seen. Additionally, a free $m=2$ mode is seen on the outer edge of the ringlet. Significant irregular structure that cannot be described using normal-mode analysis is seen on the ringlet edges as well. Particularly on the inner edge, that structure remains coherent over multi-year intervals, moving at the local Keplerian rate. We interpret the irregular structure as the signature of embedded massive bodies. The long coherence time suggests the responsible bodies are concentrated near the edge of the ringlet. Long wake-like structures originate from two locations on the inner edge of the ringlet, revealing the locations of the two most massive embedded bodies in that region. As with the Voyager observations, the Cassini data sets showed no correlation between the width and the radius of the ringlet as would be expected for a self-gravitating configuration, except for a brief interval during late 2006, when the width-radius relation was similar to those seen in most other narrow eccentric ringlets in the Solar System.



قيم البحث

اقرأ أيضاً

We used 0.85 - 5.1 micron 2006 observations by Cassinis Visual and Infrared Mapping Spectrometer (VIMS) to constrain the unusual vertical structure and compositions of cloud layers in Saturns south polar region, the site of a powerful vortex circulat ion, shadow-casting cloud bands, and spectral evidence of ammonia ice clouds without the lightning usually associated with such features. We modeled spectral observations with a 4-layer model that includes (1) a stratospheric haze, (2) a top tropospheric layer of non-absorbing (possibly diphosphine) particles near 300 mbar, with a fraction of an optical depth (much less than found elsewhere on Saturn), (3) a moderately thicker layer (1 - 2 optical depths) of ammonia ice particles near 900 mbar, and (4) extending from 5 bars up to 2-4 bars, an assumed optically thick layer where NH4SH and H20 are likely condensables. What makes the 3-micron absorption of ammonia ice unexpectedly apparent in these polar clouds, is not penetrating convection, but instead the relatively low optical depth of the top tropospheric cloud layer, perhaps because of polar downwelling and/or lower photochemical production rates. We did not find any evidence for optically thick eyewalls that were previously thought to be responsible for the observed shadows. Instead, we found evidence for small step-wise decreases in optical depth of the stratospheric haze near 87.9 deg S and in the putative diphosphine layer near 88.9 deg S, which are the likely causes of shadows and bright features we call antishadows. We found changes as a function of latitude in the phosphine vertical profile and in the arsine mixing ratio that support the existence of downwelling within 2 deg of the pole.
The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth have enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptunes cusp in 1989 but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly studying the polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during two passes through Saturns southern polar magnetosphere. Our main findings are that i) Cassini directly encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via magnetopause reconnection, ii) magnetopause reconnection and entry of plasma into the cusp can occur over a range of solar wind conditions, and iii) double cusp morphologies are consistent with the position of the cusp oscillating in phase with Saturns global magnetospheric periodicities.
Cassini/ISS imagery and Cassini/VIMS spectral imaging observations from 0.35 to 5.12 microns show that between 2012 and 2017 the region poleward of the Saturns northern hexagon changed from dark blue/green to a moderately brighter gold color, except for the inner eye region (88.2 deg - 90 deg N), which remained relatively unchanged. These and even more dramatic near-IR changes can be reproduced by an aerosol model of four compact layers consisting of a stratospheric haze at an effective pressure near 50 mbar, a deeper haze of putative diphosphine particles typically near 300 mbar, an ammonia cloud layer with a base pressure between 0.4 bar and 1.3 bar, and a deeper cloud of a possible mix of NH4SH and water ice particles within the 2.7 to 4.5 bar region. Our analysis of the background clouds between the discrete features shows that between 2013 and 2016 the effective pressures of most layers changed very little, except for the ammonia ice layer, which decreased from about 1 bar to 0.4 bar near the edge of the eye, but increased to 1 bar inside the eye. Inside the hexagon there were large increases in optical depth, by up to a factor of 10 near the eye for the putative diphosphine layer and by a factor of four over most of the hexagon interior. Inside the eye, aerosol optical depths were very low, suggesting downwelling motions. The high contrast between eye and surroundings in 2016 was due to substantial increases in optical depths outside the eye. The color change from blue/green to gold inside most of the hexagon region can be explained in our model almost entirely by changes in the stratospheric haze, which increased between 2013 and 2016 by a factor of four in optical depth and by almost a factor of three in the short-wavelength peak imaginary index.
The spectral position of the 3.6 micron continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturns icy satellites. This feature is characterizing the cry stalline water ice spectrum which is the dominant compositional endmember of the satellites surfaces. Laboratory measurements indicate that the position of the 3.6 micron peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 micron at T=123 K to about 3.55 micron at T=88 K. A similar method was already applied to VIMS Saturns rings mosaics to retrieve ring particles temperature (Filacchione et al., 2014). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types. Temperature maps are built by mining the complete VIMS dataset collected in years 2004-2009 (pre-equinox) and in 2009-2012 (post equinox) by selecting pixels with max 150 km/pixel resolution. VIMS-derived temperature maps allow to identify thermal anomalies across the equatorial lens of Mimas and Tethys.
143 - S. Rodriguez 2009
Titan is one of the primary scientific objectives of the NASA ESA ASI Cassini Huygens mission. Scattering by haze particles in Titans atmosphere and numerous methane absorptions dramatically veil Titans surface in the visible range, though it can be studied more easily in some narrow infrared windows. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini spacecraft successfully imaged its surface in the atmospheric windows, taking hyperspectral images in the range 0.4 5.2 ?m. On 26 October (TA flyby) and 13 December 2004 (TB flyby), the Cassini Huygens mission flew over Titan at an altitude lower than 1200 km at closest approach. We report here on the analysis of VIMS images of the Huygens landing site acquired at TA and TB, with a spatial resolution ranging from 16 to14.4 km/pixel. The pure atmospheric backscattering component is corrected by using both an empirical method and a first-order theoretical model. Both approaches provide consistent results. After the removal of scattering, ratio images reveal subtle surface heterogeneities. A particularly contrasted structure appears in ratio images involving the 1.59 and 2.03 ?m images north of the Huygens landing site. Although pure water ice cannot be the only component exposed at Titans surface, this area is consistent with a local enrichment in exposed water ice and seems to be consistent with DISR/Huygens images and spectra interpretations. The images show also a morphological structure that can be interpreted as a 150 km diameter impact crater with a central peak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا