ترغب بنشر مسار تعليمي؟ اضغط هنا

Control and controllability of nonlinear dynamical networks: a geometrical approach

135   0   0.0 ( 0 )
 نشر من قبل Ying-Cheng Lai
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains to be an outstanding problem. We develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability (multiple coexisting final states or attractors), which are representative of, e.g., gene regulatory networks (GRNs). The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically useful, we consider RESTRICTED parameter perturbation by imposing the following two constraints: (a) it must be experimentally realizable and (b) it is applied only temporarily. We introduce the concept of ATTRACTOR NETWORK, in which the nodes are the distinct attractors of the system, and there is a directional link from one attractor to another if the system can be driven from the former to the latter using restricted control perturbation. Introduction of the attractor network allows us to formulate a controllability framework for nonlinear dynamical networks: a network is more controllable if the underlying attractor network is more strongly connected, which can be quantified. We demonstrate our control framework using examples from various models of experimental GRNs. A finding is that, due to nonlinearity, noise can counter-intuitively facilitate control of the network dynamics.



قيم البحث

اقرأ أيضاً

Cancer forms a robust system and progresses as stages over time typically with increasing aggressiveness and worsening prognosis. Characterizing these stages and identifying the genes driving transitions between them is critical to understand cancer progression and to develop effective anti-cancer therapies. Here, we propose a novel model of the cancer system as a Boolean state space in which a Boolean network, built from protein interaction and gene-expression data from different stages of cancer, transits between Boolean satisfiability states by editing interactions and flipping genes. The application of our model (called BoolSpace) on three case studies - pancreatic and breast tumours in human and post spinal-cord injury in rats - reveals valuable insights into the phenomenon of cancer progression. In particular, we notice that several of the genes flipped are serine/threonine kinases which act as natural cellular switches and that different sets of genes are flipped during the initial and final stages indicating a pattern to tumour progression. We hypothesize that robustness of cancer partly stems from passing of the baton between genes at different stages, and therefore an effective therapy should target a cover set of these genes. A C/C++ implementation of BoolSpace is freely available at: http://www.bioinformatics.org.au/tools-data
Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems have subspaces that influence model b ehavior, but cannot be controlled by an input. Such subspaces can be difficult to determine in complex nonlinear networks. Since almost all of the present theory was developed for linear networks without symmetries, here we present a numerical and group representational framework, to quantify the observability and controllability of nonlinear networks with explicit symmetries that shows the connection between symmetries and nonlinear measures of observability and controllability. We numerically observe and theoretically predict that not all symmetries have the same effect on network observation and control. Our analysis shows that the presence of symmetry in a network may decrease observability and controllability, although networks containing only rotational symmetries remain controllable and observable. These results alter our view of the nature of observability and controllability in complex networks, change our understanding of structural controllability, and affect the design of mathematical models to observe and control such networks.
Autocatalysis underlies the ability of chemical and biochemical systems to replicate. Recently, Blokhuis et al. gave a stoechiometric definition of autocatalysis for reaction networks, stating the existence of a combination of reactions such that the balance for all autocatalytic species is strictly positive, and investigated minimal autocatalytic networks, called {em autocatalytic cores}. By contrast, spontaneous autocatalysis -- namely, exponential amplification of all species internal to a reaction network, starting from a diluted regime, i.e. low concentrations -- is a dynamical property. We introduce here a topological condition (Top) for autocatalysis, namely: restricting the reaction network description to highly diluted species, we assume existence of a strongly connected component possessing at least one reaction with multiple products (including multiple copies of a single species). We find this condition to be necessary and sufficient for stoechiometric autocatalysis. When degradation reactions have small enough rates, the topological condition further ensures dynamical autocatalysis, characterized by a strictly positive Lyapunov exponent giving the instantaneous exponential growth rate of the system. The proof is generally based on the study of auxiliary Markov chains. We provide as examples general autocatalytic cores of Type I and Type III in the typology of Blokhuis et al. In a companion article, Lyapunov exponents and the behavior in the growth regime are studied quantitatively beyond the present diluted regime .
his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoids configuration manifold, which is a set of all robots active joint angles. Bas ed on the `covariant force law, the general humanoids dynamics and control are developed. Autonomous Lagrangian dynamics is formulated on the associated `humanoid velocity phase space, while autonomous Hamiltonian dynamics is formulated on the associated `humanoid momentum phase space. Neural-like hierarchical humanoid control naturally follows this geometrical prescription. This purely rotational and autonomous dynamics and control is then generalized into the framework of modern non-autonomous biomechanics, defining the Hamiltonian fitness function. The paper concludes with several simulation examples. Keywords: Humanoid robots, Lagrangian and Hamiltonian formalisms, neural-like humanoid control, time-dependent biodynamics
Sun et al. provided an insightful comment arXiv:1108.5739v1 on our manuscript entitled Controllability of Complex Networks with Nonlinear Dynamics on arXiv. We agree on their main point that linearization about locally desired states can be violated in general by the breakdown of local control of the linearized complex network with nonlinear state. Therefore, we withdraw our manuscript. However, other than nonlinear dynamics, our claim that a single-node-control can fully control the general bidirectional/undirected linear network with 1D self-dynamics is still valid, which is similar to (but different from) the conclusion of arXiv:1106.2573v3 that all-node-control with a single signal can fully control any direct linear network with nodal-dynamics (1D self-dynamics).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا