ﻻ يوجد ملخص باللغة العربية
In spite of the recent interest and advances in linear controllability of complex networks, controlling nonlinear network dynamics remains to be an outstanding problem. We develop an experimentally feasible control framework for nonlinear dynamical networks that exhibit multistability (multiple coexisting final states or attractors), which are representative of, e.g., gene regulatory networks (GRNs). The control objective is to apply parameter perturbation to drive the system from one attractor to another, assuming that the former is undesired and the latter is desired. To make our framework practically useful, we consider RESTRICTED parameter perturbation by imposing the following two constraints: (a) it must be experimentally realizable and (b) it is applied only temporarily. We introduce the concept of ATTRACTOR NETWORK, in which the nodes are the distinct attractors of the system, and there is a directional link from one attractor to another if the system can be driven from the former to the latter using restricted control perturbation. Introduction of the attractor network allows us to formulate a controllability framework for nonlinear dynamical networks: a network is more controllable if the underlying attractor network is more strongly connected, which can be quantified. We demonstrate our control framework using examples from various models of experimental GRNs. A finding is that, due to nonlinearity, noise can counter-intuitively facilitate control of the network dynamics.
Cancer forms a robust system and progresses as stages over time typically with increasing aggressiveness and worsening prognosis. Characterizing these stages and identifying the genes driving transitions between them is critical to understand cancer
Observability and controllability are essential concepts to the design of predictive observer models and feedback controllers of networked systems. For example, noncontrollable mathematical models of real systems have subspaces that influence model b
Autocatalysis underlies the ability of chemical and biochemical systems to replicate. Recently, Blokhuis et al. gave a stoechiometric definition of autocatalysis for reaction networks, stating the existence of a combination of reactions such that the
his paper reviews modern geometrical dynamics and control of humanoid robots. This general Lagrangian and Hamiltonian formalism starts with a proper definition of humanoids configuration manifold, which is a set of all robots active joint angles. Bas
Sun et al. provided an insightful comment arXiv:1108.5739v1 on our manuscript entitled Controllability of Complex Networks with Nonlinear Dynamics on arXiv. We agree on their main point that linearization about locally desired states can be violated