ترغب بنشر مسار تعليمي؟ اضغط هنا

State-of-the-art techniques for calculating spectral functions in models for correlated materials

80   0   0.0 ( 0 )
 نشر من قبل Pablo S. Cornaglia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamical mean field theory (DMFT) has become a standard technique for the study of strongly correlated models and materials overcoming some of the limitations of density functional approaches based on local approximations. An important step in this method involves the calculation of response functions of a multiorbital impurity problem which is related to the original model. Recently there has been considerable progress in the development of techniques based on the density matrix renormalization group (DMRG) and related matrix product states (MPS) implying a substantial improvement to previous methods. In this article we review some of the standard algorithms and compare them to the newly developed techniques, showing examples for the particular case of the half-filled two-band Hubbard model.


قيم البحث

اقرأ أيضاً

Photoinduced non-thermal phase transitions are new paradigms of exotic non-equilibrium physics of strongly correlated materials. An ultrashort optical pulse can drive the system to a new order through complex microscopic interactions that do not occu r in the equilibrium state. Ultrafast spectroscopies are unique tools to reveal the underlying mechanisms of such transitions which lead to transient phases of matter. Yet, their individual specificities often do not provide an exhaustive picture of the physical problem. One effective solution to enhance their performance is the integration of different ultrafast techniques. This provides an opportunity to simultaneously probe physical phenomena from different perspectives whilst maintaining the same experimental conditions. In this context, we performed complementary experiments by combining time-resolved reflectivity and time and angle-resolved photoemission spectroscopy. We demonstrated the advantage of this combined approach by investigating the complex charge density wave (CDW) phase in 1$it{T}$-TiSe$_{2}$. Specifically, we show the key role of lattice degrees of freedom to establish and stabilize the CDW in this material.
We present a method for calculating the electronic structure of correlated materials based on a truly first-principles LDA+U scheme. Recently we suggested how to calculate U from first-principles, using a method which we named constrained RPA (cRPA). The input is simply the Kohn-Sham eigenfunctions and eigenvalues obtained within the LDA. In our proposed self-consistent LDA+U scheme, we calculate the LDA+U eigenfunctions and eigenvalues and use these to extract U. The updated U is then used in the next iteration to obtain a new set of eigenfunctions and eigenvalues and the iteration is continued until convergence is achieved. The most significant result is that our numerical approach is indeed stable: it is possible to find the effective exchange and correlation interaction matrix in a self-consistent way, resulting in a significant improvement over the LDA results, regarding both the bandgap in NiO and the f-band exchange spin-splitting in Gd, but some discrepancies still remain.
We provide a prescription for constructing Hamiltonians representing the low energy physics of correlated electron materials with dynamically screened Coulomb interactions. The key feature is a renormalization of the hopping and hybridization paramet ers by the processes that lead to the dynamical screening. The renormalization is shown to be non-negligible for various classes of correlated electron materials. The bandwidth reduction effect is necessary for connecting models to materials behavior and for making quantitative predictions for low-energy properties of solids.
The method used earlier for analysis of correlated nanoscopic systems is extended to infinite (periodic) s-band like systems described by the Hubbard model and its extensions. The optimized single-particle wave functions contained in the parameters o f the Hubbard model (the hopping textit{t} and the magnitude of the intraatomic interaction textit{U}) are determined explicitly in the correlated state for the electronic systems of various symmetries and dimensions: Hubbard chain, square and triangular planar lattices, and the three cubic lattices (SC, BCC, FCC). In effect, the evolution of the electronic properties as a function of interatomic distance $R$ is obtained. The model parameters in most cases do not scale linearly with the lattice spacing and hence, their solution as a function of microscopic parameters reflects only qualitatively the system evolution. Also, the atomic energy changes with $R$ and therefore should be included in the model analysis. The solutions in one dimension (textit{D} = 1) can be analyzed both rigorously (by making use of the Lieb--Wu solution) and compared with the approximate Gutzwiller treatment. In higher dimensions (textit{D} = 2, 3) only the latter approach is possible to implement within the scheme. The renormalized single particle wave functions are almost independent of the choice of the scheme selected to diagonalize the Hamiltonian in the Fock space in D=1 case. The method can be extended to other approximation schemes as stressed at the end.
Lattice models consisting of high-dimensional local degrees of freedom without global particle-number conservation constitute an important problem class in the field of strongly correlated quantum many-body systems. For instance, they are realized in electron-phonon models, cavities, atom-molecule resonance models, or superconductors. In general, these systems elude a complete analytical treatment and need to be studied using numerical methods where matrix-product states (MPS) provide a flexible and generic ansatz class. Typically, MPS algorithms scale at least quadratic in the dimension of the local Hilbert spaces. Hence, tailored methods, which truncate this dimension, are required to allow for efficient simulations. Here, we describe and compare three state-of-the-art MPS methods each of which exploits a different approach to tackle the computational complexity. We analyze the properties of these methods for the example of the Holstein model, performing high-precision calculations as well as a finite-size-scaling analysis of relevant ground-state obervables. The calculations are performed at different points in the phase diagram yielding a comprehensive picture of the different approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا