ﻻ يوجد ملخص باللغة العربية
Bilayer graphene hosts valley-chiral one dimensional modes at domain walls between regions of different interlayer potential or stacking order. When such a channel is brought into proximity to a superconductor, the two electrons of a Cooper pair which tunnel into it move in opposite directions because they belong to different valleys related by the time-reversal symmetry. This is a kinetic variant of Cooper pair splitting, which requires neither Coulomb repulsion nor energy filtering but is enforced by the robustness of the valley isospin in the absence of atomic-scale defects. We derive an effective model for the guided modes in proximity to an s-wave superconductor, calculate the conductance carried by split and spin-entangled electron pairs, and interpret it as a result of local Andreev reflection processes, whereas crossed Andreev reflection is absent.
We consider ballistic SQUIDs with spin filtering inside half-metallic ferromagnetic arms. A singlet Cooper pair cannot pass through an arm in this case, so the Josephson current is entirely due to the Cooper pair splitting, with two electrons going t
We study Josephson junctions with weak links consisting of two parallel disordered arms with magnetic properties -- ferromagnetic, half-metallic or normal with magnetic impurities. In the case of long links, the Josephson effect is dominated by mesos
Thermoelectric effect is exploited to optimize the Cooper pair splitting efficiency in a Y-shaped junction, which consists of two normal leads coupled to an $s$-wave superconductor via double noninteracting quantum dots. Here, utilizing temperature d
We report an experimental study of Cooper pair splitting in an encapsulated graphene based multiterminal junction in the ballistic transport regime. Our device consists of two transverse junctions, namely the superconductor/graphene/superconductor an
In this paper, we demonstrate that the hybrid normal-superconducting-normal (NSN) structure has potential for a multifunctional thermal device which could serve for heat flux control and cooling of microstructures. By adopting the scattering matrix a