ﻻ يوجد ملخص باللغة العربية
We present the new paradigm of critical current by design. Analogous to materials by design, it aims at predicting the optimal defect landscape in a superconductor for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To highlight this approach, we demonstrate the synergistic combination of critical current measurements on commercial high-temperature superconductors containing self-assembled and irradiation tailored correlated defects by using large-scale time-dependent Ginzburg-Landau simulations for vortex dynamics.
The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nano-patterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an
Understanding the effect of pinning on the vortex dynamics in superconductors is a key factor towards controlling critical current values. Large-scale simulations of vortex dynamics can provide a rational approach to achieve this goal. Here, we use t
The ability of type-II superconductors to carry large amounts of current at high magnetic fields is a key requirement for future design innovations in high-field magnets for accelerators and compact fusion reactors and largely depends on the vortex p
In a class of type II superconductor films, the critical current is determined by the Bean-Livingston barrier posed by the film surfaces to vortex penetration into the sample. A bulk property thus depends sensitively on the surface or interface to an
While it is known that the nature and the arrangement of defects in complex oxides have an impact on the material functionalities little is known on control of superconductivity by oxygen interstitial organization in cuprates. Here we report direct c