ﻻ يوجد ملخص باللغة العربية
We formalize some basic properties of Fourier series in the logic of ACL2(r), which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally evaluating definite integrals of real-valued, continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework is also applied to functions containing free arguments. Using this framework, we are able to prove the orthogonality relationships between trigonometric functions, which are the essential properties in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by applying the extended framework along with the First Fundamental Theorem of Calculus and the sum rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is a straightforward corollary. We also present our formalization of the sum rule for definite integrals of infinite series in ACL2(r). Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity of a limit function under certain conditions. A key technique in our proofs of these theorems is to apply the overspill principle from non-standard analysis.
Iterative algorithms are traditionally expressed in ACL2 using recursion. On the other hand, Common Lisp provides a construct, loop, which -- like most programming languages -- provides direct support for iteration. We describe an ACL2 analogue loop$
A perfect number is a positive integer n such that n equals the sum of all positive integer divisors of n that are less than n. That is, although n is a divisor of n, n is excluded from this sum. Thus 6 = 1 + 2 + 3 is perfect, but 12 < 1 + 2 + 3 + 4
Given a field K, a quadratic extension field L is an extension of K that can be generated from K by adding a root of a quadratic polynomial with coefficients in K. This paper shows how ACL2(r) can be used to reason about chains of quadratic extension
The Cayley-Dickson Construction is a generalization of the familiar construction of the complex numbers from pairs of real numbers. The complex numbers can be viewed as two-dimensional vectors equipped with a multiplication. The construction can be
As Graphics Processing Units (GPUs) have gained in capability and GPU development environments have matured, developers are increasingly turning to the GPU to off-load the main host CPU of numerically-intensive, parallelizable computations. Modern GP