ترغب بنشر مسار تعليمي؟ اضغط هنا

Forbidden phonon: dynamical signature of bond symmetry breaking in the iron chalcogenides

174   0   0.0 ( 0 )
 نشر من قبل David Fobes
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Investigation of the inelastic neutron scattering spectra in Fe$_{1+y}$Te$_{1-x}$Se$_{x}$ near a signature wave vector $mathbf{Q} = (1,0,0)$ for the bond-order wave (BOW) formation of parent compound Fe$_{1+y}$Te [Phys. Rev. Lett. 112, 187202 (2014)] reveals an acoustic-phonon-like dispersion present in all structural phases. While a structural Bragg peak accompanies the mode in the low-temperature phase of Fe$_{1+y}$Te, it is absent in the high-temperature tetragonal phase, where Bragg scattering at this $mathbf{Q}$ is forbidden by symmetry. Notably, this mode is also observed in superconducting FeTe$_{0.55}$Se$_{0.45}$, where structural and magnetic transitions are suppressed, and no BOW has been observed. The presence of this forbidden phonon indicates that the lattice symmetry is dynamically or locally broken by magneto-orbital BOW fluctuations, which are strongly coupled to lattice in these materials.



قيم البحث

اقرأ أيضاً

The nontrivialness of quantum spin liquid (QSL) typically manifests in the non-local observables that signifies their existence, however, this fact actually casts shadow on detecting QSL with experimentally accessible probes. Here, we provide a solut ion by unbiasedly demonstrating dynamical signature of anyonic excitations and symmetry fractionalization in QSL. Employing large-scale quantum Monte Carlo simulation and stochastic analytic continuation, we investigate the extended XXZ model on the kagome lattice, and find out that across the phase transitions from Z2 QSLs to different symmetry breaking phases, spin spectral functions can reveal the presence and condensation of emergent anyonic spinon and vison excitations, in particular the translational symmetry fractionalization of the latter, which can be served as the unique dynamical signature of the seemingly ephemeral QSLs in spectroscopic techniques such as inelastic neutron or resonance (inelastic) X-ray scatterings.
We investigate topological signatures in the short-time non-equilibrium dynamics of symmetry protected topological (SPT) systems starting from initial states which break the protecting symmetry. Naively, one might expect that topology loses meaning w hen a protecting symmetry is broken. Defying this intuition, we illustrate, in an interacting Su-Schrieffer-Heeger (SSH) model, how this combination of symmetry breaking and quench dynamics can give rise to both single-particle and many-body signatures of topology. From the dynamics of the symmetry broken state, we find that we are able to dynamically probe the equilibrium topological phase diagram of a symmetry respecting projection of the post-quench Hamiltonian. In the ensemble dynamics, we demonstrate how spontaneous symmetry breaking (SSB) of the protecting symmetry can result in a quantized many-body topological `invariant which is not pinned under unitary time evolution. We dub this `dynamical many-body topology (DMBT). We show numerically that both the pure state and ensemble signatures are remarkably robust, and argue that these non-equilibrium signatures should be quite generic in SPT systems, regardless of protecting symmetries or spatial dimension.
Deviations of low-energy electronic structure of iron-based superconductors from density functional theory predictions have been parametrized in terms of band- and orbital-dependent mass renormalizations and energy shifts. The former have typically b een described in terms of a local self-energy within the framework of dynamical mean field theory, while the latter appears to require non-local effects due to interband scattering. By calculating the renormalized bandstructure in both random phase approximation (RPA) and the two-particle self-consistent approximation (TPSC), we show that correlations in pnictide systems like LaFeAsO and LiFeAs can be described rather well by a non-local self-energy. In particular, Fermi pocket shrinkage as seen in experiment occurs due to repulsive interband finite-energy scattering. For the canonical iron chalcogenide system FeSe in its bulk tetragonal phase, the situation is however more complex since even including momentum-dependent band renormalizations cannot explain experimental findings. We propose that the long-range Coulomb interaction may play an important role in band-structure renormalization in FeSe. We further compare our evaluations of non-local quasiparticle scattering lifetime within RPA and TPSC with experimental data for LiFeAs.
Our detailed temperature dependent synchrotron powder x-ray diffraction studies along with first-principles density functional perturbation theory calculations, enable us to shed light on the origin of ferroelectricity in GdCrO3. The actual lattice s ymmetry is found to be noncentrosymmetric orthorhombic Pna21 structure, sup- porting polar nature of the system. Polar distortion is driven by local symmetry breaking and by local distortions dominated by Gd off-centering. Our study reveals an intimate analogy between GdCrO3 and YCrO3. However, a distinctive difference exists that Gd is less displacive compared to Y, which results in an orthorhombic P na21 structure in GdCrO3 in contrast to monoclinic structure in YCrO3 and consequently, decreases its polar property. This is due to the subtle forces involving Gd-4f electrons either directly or indirectly. A strong magneto-electric coupling is revealed using Raman measurements based analysis in the system below Cr-ordering temperature, indicating their relevance to ferroelectric modulation.
In this paper we study how dynamical chiral symmetry breaking is affected by nonzero chiral chemical potential in Dirac semimetals. To perform this study we applied lattice quantum Monte Carlo simulations of Dirac semimetals. Within lattice simulatio n we calculated the chiral condensate for various fermion masses, the chiral chemical potentials and effective coupling constants. For all parameters under consideration we have found that the chiral condensate is enhanced by chiral chemical potential. Thus our results confirms that in Dirac semimetals the chiral chemical potential plays a role of the catalyst of the dynamical chiral symmetry breaking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا