ﻻ يوجد ملخص باللغة العربية
Motivated by Brundan-Kleshchevs work on higher Schur-Weyl duality, we establish mixed Schur-Weyl duality between general linear Lie algebras and cyclotomic walled Brauer algebras in an arbitrary level. Using weakly cellular bases of cyclotomic walled Brauer algebras, we classify highest weight vectors of certain mixed tensor modules of general linear Lie algebras. This leads to an efficient way to compute decomposition matrices of cyclotomic walled Brauer algebras arising from mixed Schur-Weyl duality, which generalizes early results on level two walled Brauer algebras.
In this paper, we give a criterion on the semisimplicity of quantized walled Brauer algebras $mathscr B_{r,s}$ and classify its simple modules over an arbitrary field $kappa$.
In this paper, we establish explicit relationship between decomposition numbers of quantized walled Brauer algebras and those for either Hecke algebras associated to certain symmetric groups or (rational) $q$-Schur algebras over a field $kappa$. This
Let g be a finite dimensional complex semisimple Lie algebra, and let V be a finite dimensional represenation of g. We give a closed formula for the mth Frobenius-Schur indicator, m>1, of V in representation-theoretic terms. We deduce that the indica
The aim of this paper is to introduce and study Lie algebras and Lie groups over noncommutative rings. For any Lie algebra $gg$ sitting inside an associative algebra $A$ and any associative algebra $FF$ we introduce and study the algebra $(gg,A)(FF)$
The classical Frobenius-Schur indicators for finite groups are character sums defined for any representation and any integer m greater or equal to 2. In the familiar case m=2, the Frobenius-Schur indicator partitions the irreducible representations o