ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic spin-orbit coupling in an optical lattice clock

407   0   0.0 ( 0 )
 نشر من قبل Michael Wall
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose the use of optical lattice clocks operated with fermionic alkaline-earth-atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation when atoms are allowed to tunnel and accumulate a phase set by the ratio of the magic lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy, that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers, can perform momentum-resolved band tomography and determine SOC-induced $s$-wave collisions in nuclear spin polarized fermions. By adding a second counter-propagating clock beam a sliding superlattice can be implemented and used for controlled atom transport and as a probe of $p$ and $s$-wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.



قيم البحث

اقرأ أيضاً

We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron $^{173}$Yb atoms. By mapping the electronic sta tes onto effective sites along a synthetic electronic dimension, we have engineered synthetic fermionic ladders with tunable magnetic fluxes. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the magnetic field flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.
Recent experimental realization of one-dimensional (1D) spin-orbit coupling (SOC) for ultracold alkaline-earth(-like) atoms in optical lattice clocks opens a new avenue for exploring exotic quantum matter because of the strongly suppressed heating of atoms from lasers comparing with alkaline atoms. Here we propose a scheme to realize two-dimensional (2D) Rashba and three-dimensional (3D) Weyl types of SOC in a 3D optical lattice clock and explore their topological phases. With 3D Weyl SOC, the system can support topological phases with various numbers as well as types (I or II) of Weyl points. The spin textures of such topological bands for 2D Rashba and 3D Weyl SOC can be detected using suitably designed spectroscopic sequences. Our proposal may pave the way for the experimental realization of robust topological quantum matters and their exotic quasiparticle excitations in ultracold atomic gases.
Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, whi ch limits the observation of many-body effects, motivating research into potential alternatives. Here we demonstrate that SOC can be engineered to occur naturally in a one-dimensional fermionic 87Sr optical lattice clock (OLC). In contrast to previous SOC experiments, in this work the SOC is both generated and probed using a direct ultra-narrow optical clock transition between two electronic orbital states. We use clock spectroscopy to prepare lattice band populations, internal electronic states, and quasimomenta, as well as to produce SOC dynamics. The exceptionally long lifetime of the excited clock state (160 s) eliminates decoherence and atom loss from spontaneous emission at all relevant experimental timescales, allowing subsequent momentum- and spin-resolved in situ probing of the SOC band structure and eigenstates. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and Van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases of matter.
153 - Q. Sun , G.-B. Zhu , W.-M. Liu 2013
We investigate the superfluidity of attractive Fermi gas in a square optical lattice with spin-orbit coupling (SOC). We show that the system displays a variety of new filling-dependent features. At half filling, a quantum phase transition from a semi metal to a superfluid is found for large SOC. Close to half filling where the emerging Dirac cones governs the behaviors of the system, SOC tends to suppress the BCS superfluidity. Conversely, SOC can significantly enhance both the pairing gap and condensate fraction and lead to a new BCS-BEC crossover for small fillings. Moreover, we demonstrate that the superfluid fraction also exhibits many interesting phenomena compared with the spin-orbit coupled Fermi gas without lattice.
209 - Ming-Yong Ye , Xiu-Min Lin 2012
We consider the simulation of non-abelian gauge potentials in ultracold atom systems with atom-field interaction in the $Lambda$ configuration where two internal states of an atom are coupled to a third common one with a detuning. We find the simulat ed non-abelian gauge potentials can have the same structures as those simulated in the tripod configuration if we parameterize Rabi frequencies properly, which means we can design spin-orbit coupling simulation schemes based on those proposed in the tripod configuration. We show the simulated spin-orbit coupling in the $Lambda$ configuration can only be of a form similar to $p_{x}sigma_{y}$ even when the Rabi frequencies are not much smaller than the detuning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا