ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transitions in optimal search times: how random walkers should combine resetting and flight scales

148   0   0.0 ( 0 )
 نشر من قبل Daniel Campos
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent works have explored the properties of Levy flights with resetting in one-dimensional domains and have reported the existence of phase transitions in the phase space of parameters which minimizes the Mean First Passage Time (MFPT) through the origin [Phys. Rev. Lett. 113, 220602 (2014)]. Here we show how actually an interesting dynamics, including also phase transitions for the minimization of the MFPT, can also be obtained without invoking the use of Levy statistics but for the simpler case of random walks with exponentially distributed flights of constant speed. We explore this dynamics both in the case of finite and infinite domains, and for different implementations of the resetting mechanism to show that different ways to introduce resetting consistently lead to a quite similar dynamics. The use of exponential flights has the strong advantage that exact solutions can be obtained easily for the MFPT through the origin, so a complete analytical characterization of the system dynamics can be provided. Furthermore, we discuss in detail how the phase transitions observed in random walks with resetting are closely related to several ideas recurrently used in the field of random search theory, in particular to other mechanisms proposed to understand random search in space as mortal random-walks or multi-scale random-walks. As a whole we corroborate that one of the essential ingredients behind MFPT minimization lies in the combination of multiple movement scales (whatever its origin).



قيم البحث

اقرأ أيضاً

210 - D. Campos , E. Abad , V. Mendez 2015
We present a simple paradigm for detection of an immobile target by a space-time coupled random walker with a finite lifetime. The motion of the walker is characterized by linear displacements at a fixed speed and exponentially distributed duration, interrupted by random changes in the direction of motion and resumption of motion in the new direction with the same speed. We call these walkers mortal creepers. A mortal creeper may die at any time during its motion according to an exponential decay law characterized by a finite mean death rate $omega_m$. While still alive, the creeper has a finite mean frequency $omega$ of change of the direction of motion. In particular, we consider the efficiency of the target search process, characterized by the probability that the creeper will eventually detect the target. Analytic results confirmed by numerical results show that there is an $omega_m$-dependent optimal frequency $omega=omega_{opt}$ that maximizes the probability of eventual target detection. We work primarily in one-dimensional ($d=1$) domains and examine the role of initial conditions and of finite domain sizes. Numerical results in $d=2$ domains confirm the existence of an optimal frequency of change of direction, thereby suggesting that the observed effects are robust to changes in dimensionality. In the $d=1$ case, explicit expressions for the probability of target detection in the long time limit are given. In the case of an infinite domain, we compute the detection probability for arbitrary times and study its early- and late-time behavior. We further consider the survival probability of the target in the presence of many independent creepers beginning their motion at the same location and at the same time. We also consider a version of the standard target problem in which many creepers start at random locations at the same time.
We study first-passage time problems for a diffusive particle with stochastic resetting with a finite rate $r$. The optimal search time is compared quantitatively with that of an effective equilibrium Langevin process with the same stationary distrib ution. It is shown that the intermittent, nonequilibrium strategy with non-vanishing resetting rate is more efficient than the equilibrium dynamics. Our results are extended to multiparticle systems where a team of independent searchers, initially uniformly distributed with a given density, looks for a single immobile target. Both the average and the typical survival probability of the target are smaller in the case of nonequilibrium dynamics.
An efficient searcher needs to balance properly the tradeoff between the exploration of new spatial areas and the exploitation of nearby resources, an idea which is at the core of scale-free Levy search strategies. Here we study multi-scale random wa lks as an approximation to the scale- free case and derive the exact expressions for their mean-first passage times in a one-dimensional finite domain. This allows us to provide a complete analytical description of the dynamics driving the asymmetric regime, in which both nearby and faraway targets are available to the searcher. For this regime, we prove that the combination of only two movement scales can be enough to outperform both balistic and Levy strategies. This two-scale strategy involves an optimal discrimination between the nearby and faraway targets, which is only possible by adjusting the range of values of the two movement scales to the typical distances between encounters. So, this optimization necessarily requires some prior information (albeit crude) about targets distances or distributions. Furthermore, we found that the incorporation of additional (three, four, ...) movement scales and its adjustment to target distances does not improve further the search efficiency. This allows us to claim that optimal random search strategies in the asymmetric regime actually arise through the informed combination of only two walk scales (related to the exploitative and the explorative scale, respectively), expanding on the well-known result that optimal strategies in strictly uninformed scenarios are achieved through Levy paths (or, equivalently, through a hierarchical combination of multiple scales).
We consider the mean time to absorption by an absorbing target of a diffusive particle with the addition of a process whereby the particle is reset to its initial position with rate $r$. We consider several generalisations of the model of M. R. Evans and S. N. Majumdar (2011), Diffusion with stochastic resetting, Phys. Rev. Lett. 106, 160601: (i) a space dependent resetting rate $r(x)$ ii) resetting to a random position $z$ drawn from a resetting distribution ${cal P}(z)$ iii) a spatial distribution for the absorbing target $P_T(x)$. As an example of (i) we show that the introduction of a non-resetting window around the initial position can reduce the mean time to absorption provided that the initial position is sufficiently far from the target. We address the problem of optimal resetting, that is, minimising the mean time to absorption for a given target distribution. For an exponentially decaying target distribution centred at the origin we show that a transition in the optimal resetting distribution occurs as the target distribution narrows.
We study the problem of random search in finite networks with a tree topology, where it is expected that the distribution of the first-passage time F(t) decays exponentially. We show that the slope of the exponential tail is independent of the initia l conditions of entering the tree in general, and scales exponentially or as a power law with the extent of the tree L, depending on the tendency p to jump toward the target node. It is unfeasible to uniquely determine L and p from measuring the tail slope or the mean first-passage time (MFPT) of an ordinary diffusion along the tree. To unravel the structure, we consider lazy random walkers that take steps with probability m when jumping on the nodes and return with probability q from the leaves. By deriving an exact analytical expression for the MFPT of the intermittent random walk, we verify that the structural information of the tree can be uniquely extracted by measuring the MFPT for two randomly chosen types of tracer particles with distinct experimental parameters m and q. We also address the applicability of our approach in the presence of disorder in the structure of the tree or statistical uncertainty in the experimental parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا