ترغب بنشر مسار تعليمي؟ اضغط هنا

Assembly and Test of the Gas Pixel Detector for X-ray Polarimetry

67   0   0.0 ( 0 )
 نشر من قبل Hua Feng
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gas pixel detector (GPD) dedicated for photoelectric X-ray polarimetry is selected as the focal plane detector for the ESA medium-class mission concept X-ray Imaging and Polarimetry Explorer (XIPE). Here we show the design, assembly, and preliminary test results of a small GPD for the purpose of gas mixture optimization needed for the phase A study of XIPE. The detector is assembled in house at Tsinghua University following a design by the INFN-Pisa group. The improved detector design results in a good uniformity for the electric field. Filled with pure dimethyl ether (DME) at 0.8 atm, the measured energy resolution is 18% at 6 keV and inversely scales with the square root of the X-ray energy. The measured modulation factor is well consistent with that from simulation, up to ~0.6 above 6 keV. The residual modulation is found to be 0.30% +/- 0.15% at 6 keV for the whole sensitive area, which can be translated into a systematic error of less than 1% for polarization measurement at a confidence level of 99%. The position resolution of the detector is about 80 um in FWHM, consistent with previous studies and sufficient for XIPE requirements.

قيم البحث

اقرأ أيضاً

The Gas Pixel Detector, recently developed and continuously improved by Pisa INFN in collaboration with IASF-Roma of INAF, can visualize the tracks produced within a low Z gas by photoelectrons of few keV. By reconstructing the impact point and the o riginal direction of the photoelectrons, the GPD can measure the linear polarization of X-rays, while preserving the information on the absorption point, the energy and the time of individual photons. Applied to X-ray Astrophysics, in the focus of grazing incidence telescopes, it can perform angular resolved polarimetry with a huge improvement of sensitivity, when compared with the conventional techniques of Bragg diffraction at 45 degrees and Compton scattering around 90 degrees. This configuration is the basis of POLARIX and HXMT, two pathfinder missions, and is included in the baseline design of IXO, the very large X-ray telescope under study by NASA, ESA and JAXA.
The Sun is the nearest astrophysical source with a very intense emission in the X-ray band. The study of energetic events, such as solar flares, can help us to understand the behaviour of the magnetic field of our star. There are in the literature nu merous studies published about polarization predictions, for a wide range of solar flares models involving the emission from thermal and/or non-thermal processes, but observations in the X-ray band have never been exhaustive. The gas pixel detector (GPD) was designed to achieve X-ray polarimetric measurements as well as X-ray images for far astrophysical sources. Here we present the possibility to employ this instrument for the observation of our Sun in the X-ray band.
We discuss a new class of Micro Pattern Gas Detectors, the Gas Pixel Detector (GPD), in which a complete integration between the gas amplification structure and the read-out electronics has been reached. An Application-Specific Integrated Circuit (AS IC) built in deep sub-micron technology has been developed to realize a monolithic device that is, at the same time, the pixelized charge collecting electrode and the amplifying, shaping and charge measuring front-end electronics. The CMOS chip has the top metal layer patterned in a matrix of 80 micron pitch hexagonal pixels, each of them directly connected to the underneath electronics chain which has been realized in the remaining five layers of the 0.35 micron VLSI technology. Results from tests of a first prototype of such detector with 2k pixels and a full scale version with 22k pixels are presented. The application of this device for Astronomical X-Ray Polarimetry is discussed. The experimental detector response to polarized and unpolarized X-ray radiation is shown. Results from a full MonteCarlo simulation for two astronomical sources, the Crab Nebula and the Hercules X1, are also reported.
Due to be launched in late 2021, the Imaging X-Ray Polarimetry Explorer (IXPE) is a NASA Small Explorer mission designed to perform polarization measurements in the 2-8 keV band, complemented with imaging, spectroscopy and timing capabilities. At the heart of the focal plane is a set of three polarization-sensitive Gas Pixel Detectors (GPD), each based on a custom ASIC acting as a charge-collecting anode. In this paper we shall review the design, manufacturing, and test of the IXPE focal-plane detectors, with particular emphasis on the connection between the science drivers, the performance metrics and the operational aspects. We shall present a thorough characterization of the GPDs in terms of effective noise, trigger efficiency, dead time, uniformity of response, and spectral and polarimetric performance. In addition, we shall discuss in detail a number of instrumental effects that are relevant for high-level science analysis -- particularly as far as the response to unpolarized radiation and the stability in time are concerned.
67 - Philip Kaaret 2014
We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors hav e enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band soft X-ray polarimeters based on Bragg reflection. Developments in scintillator and solid-state hard X-ray detectors facilitate construction of both modular, large area Compton scattering polarimeters and compact devices suitable for use with focusing X-ray telescopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا