ﻻ يوجد ملخص باللغة العربية
Vector quantization-based approaches are successful to solve Approximate Nearest Neighbor (ANN) problems which are critical to many applications. The idea is to generate effective encodings to allow fast distance approximation. We propose quantization-based methods should partition the data space finely and exhibit locality of the dataset to allow efficient non-exhaustive search. In this paper, we introduce the concept of High Capacity Locality Aggregating Encodings (HCLAE) to this end, and propose Dictionary Annealing (DA) to learn HCLAE by a simulated annealing procedure. The quantization error is lower than other state-of-the-art. The algorithms of DA can be easily extended to an online learning scheme, allowing effective handle of large scale data. Further, we propose Aggregating-Tree (A-Tree), a non-exhaustive search method using HCLAE to perform efficient ANN-Search. A-Tree achieves magnitudes of speed-up on ANN-Search tasks, compared to the state-of-the-art.
Quantization methods have been introduced to perform large scale approximate nearest search tasks. Residual Vector Quantization (RVQ) is one of the effective quantization methods. RVQ uses a multi-stage codebook learning scheme to lower the quantizat
We introduce a novel dictionary optimization method for high-dimensional vector quantization employed in approximate nearest neighbor (ANN) search. Vector quantization methods first seek a series of dictionaries, then approximate each vector by a sum
High-dimensional Nearest Neighbor (NN) search is central in multimedia search systems. Product Quantization (PQ) is a widespread NN search technique which has a high performance and good scalability. PQ compresses high-dimensional vectors into compac
We propose a generic feature compression method for Approximate Nearest Neighbor Search (ANNS) problems, which speeds up existing ANNS methods in a plug-and-play manner. Specifically, we propose a new network structure called Compression Network with
Approximate nearest neighbor algorithms are used to speed up nearest neighbor search in a wide array of applications. However, current indexing methods feature several hyperparameters that need to be tuned to reach an acceptable accuracy--speed trade