ﻻ يوجد ملخص باللغة العربية
Voyager 2 observations revealed that the internal luminosity of Neptune is an order of magnitude higher than that of Uranus. If the two planets have similar interior structures and cooling histories, the luminosity of Neptune can only be explained by invoking some energy source beyond gravitational contraction. This paper investigates whether Centaur impacts could provide the energy necessary to produce the luminosity of Neptune. The major findings are (1) that impacts on both Uranus and Neptune are too infrequent to provide luminosities of order the observed value for Neptune, even for optimistic impact-rate estimates, and (2) that Uranus and Neptune rarely have significantly different impact-generated luminosities at any given time. Uranus and Neptune most likely have structural differences that force them to cool and contract at different rates.
The origin of Mercurys high iron-to-rock ratio is still unknown. In this work we investigate Mercurys formation via giant impacts and consider the possibilities of a single giant impact, a hit-and-run, and multiple collisions in one theoretical frame
The current giant planet region is a transitional zone where transneptunian objects (TNOs) cross in their way to becoming Jupiter Family Comets (JFCs). Their dynamical behavior is conditioned by the intrinsic dynamical features of TNOs and also by th
The detectability of planetesimal impacts on imaged exoplanets can be measured using Jupiter during the 1994 comet Shoemaker-Levy 9 events as a proxy. By integrating the whole planet flux with and without impact spots, the effect of the impacts at wa
We present the near- through mid-infrared flux contribution of thermally-pulsing asymptotic giant branch (TP-AGB) and massive red super giant (RSG) stars to the luminosities of the Large and Small Magellanic Clouds (LMC and SMC, respectively). Combin
Uranus and Neptune, and their diverse satellite and ring systems, represent the least explored environments of our Solar System, and yet may provide the archetype for the most common outcome of planetary formation throughout our galaxy. Ice Giants wi