ﻻ يوجد ملخص باللغة العربية
We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound SmB6, a prototype Kondo insulator. Temperature dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ~T*=20 K, well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20K) indicates the emergence of a surface state with an effective electron mass of 0.1me. Conductivity dynamics following optical excitation are also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20K, indicative of another channel opening up in the low energy electrodynamics. Taken together, these results suggest the onset of a surface state well below the crossover temperature (100K) after long-range coherence of the f-electron Kondo lattice is established.
We used the inverted resistance method to extend the bulk resistivity of SmB$_{6}$ to a regime where the surface conduction overwhelms the bulk. Remarkably, the bulk resistivity shows an intrinsic thermally activated behavior that changes ten orders
The predicted interplay between Kondo physics and non-trivial topology in SmB$_{6}$ has stimulated many experimental reports, some of which are in apparent contradiction. The origin of the dispute may lie on the fragility of the Kondo insulating phas
The temperature and thickness dependencies of the in-plane anisotropic magnetoresistance (AMR) of SmB$_6$ thin films are reported. We find that the AMR changes sign from negative ($rho_{||}<rho_{perp}$) at high temperatures to positive ($rho_{||}>rho
After the theoretical prediction that SmB$_6$ is a topological Kondo insulator, there has been an explosion of studies on the SmB$_6$ surface. However, there is not yet an agreement on even the most basic quantities such as the surface carrier densit
SmO thin film is a new Kondo system showing a resistivity upturn around 10 K and was theoretically proposed to have a topologically nontrivial band structure. We have performed hard x-ray and soft x-ray photoemission spectroscopy to elucidate the ele