ﻻ يوجد ملخص باللغة العربية
The abundance anomalies in lambda Boo stars are popularly explained by element-specific mass inflows at rates that are much greater than empirically-inferred bounds for interstellar accretion. Therefore, a lambda Boo stars thin outer envelope must derive from a companion star, planet, analogs to Kuiper Belt Objects or a circumstellar disk. Because radiation pressure on gas-phase ions might selectively allow the accretion of carbon, nitrogen, and oxygen and inhibit the inflow of elements such as iron, the source of the acquired matter need not contain dust. We propose that at least some lambda Boo stars accrete from the winds of hot Jupiters.
Tau Boo is an intriguing planet-host star that is believed to undergo magnetic cycles similar to the Sun, but with a duration that is about one order of magnitude smaller than that of the solar cycle. With the use of observationally derived surface m
We examine the large sample of lambda Boo candidates collected in Table 1 of Gerbaldi et al. (2003) to see how many of them show composite spectra. Of the 132 lambda Boo candidates we identify 22 which definitely show composite spectra and 15 more fo
Open clusters are historically regarded as single-aged stellar populations representative of star formation within the Galactic disk. Recent literature has questioned this view, based on discrepant Na abundances relative to the field, and concerns ab
Protoplanetary disk surveys by the Atacama Large Millimeter/sub-millimeter Array (ALMA) are now probing a range of environmental conditions, from low-mass star-forming regions like Lupus to massive OB clusters like $sigma$ Orionis. Here we conduct an
Bow shocks can be formed around planets due to their interaction with the coronal medium of the host stars. The net velocity of the particles impacting on the planet determines the orientation of the shock. At the Earths orbit, the (mainly radial) so