ترغب بنشر مسار تعليمي؟ اضغط هنا

A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam

63   0   0.0 ( 0 )
 نشر من قبل Mariela Mart\\'Inez
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the nuclear infrared (IR, 1.6 to 18 $mu$m) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution ($0.3-0.5$ arcsec) imaging using the Si-2 filter ($lambda_{C}=8.7, mu$m) and $7.5-13$ $mu$m spectroscopy taken with CanariCam (CC) on the 10.4m Gran Telescopio CANARIAS. We also use archival HST/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the large covering factor and the high foreground extinction needed to reproduce the deep $9.7, mu$m silicate feature, are consistent with the lack of strong AGN signatures in the optical. We derive an AGN bolometric luminosity $L_{bol}sim1.9times10^{45},$erg s$^{-1}$ that is in good agreement with other estimates in the literature.

قيم البحث

اقرأ أيضاً

We describe a mid-infrared (MIR) survey of local AGN to be conducted with the CanariCam instrument on the Gran Telescopio Canarias (GTC). We will obtain MIR imaging and spectroscopy of a sample of ~100 AGN covering six orders of magnitude in AGN lumi nosity, and including different AGN classes (e.g., LINERs, Seyfert 1s and 2s, QSO). The main goals are: (1) to test unification of Type 1 and Type 2 AGN, (2) to study the star formation activity around AGN, and (3) to explore the role of the dusty torus in low-luminosity AGN.
We present an atlas of mid-infrared (mid-IR) ~7.5-13micron spectra of 45 local active galactic nuclei (AGN) obtained with CanariCam on the 10.4m Gran Telescopio CANARIAS (GTC) as part of an ESO/GTC large program. The sample includes Seyferts and othe r low luminosity AGN (LLAGN) at a median distance of 35Mpc and luminous AGN, namely PG quasars, (U)LIRGs, and radio galaxies (RG) at a median distance of 254Mpc. To date, this is the largest mid-IR spectroscopic catalog of local AGN at sub-arcsecond resolution (median 0.3arcsec). The goal of this work is to give an overview of the spectroscopic properties of the sample. The nuclear 12micron luminosities of the AGN span more than four orders of magnitude, nu*Lnu(12micron)~ 3e41-1e46erg/s. In a simple mid-IR spectral index vs. strength of the 9.7micron silicate feature diagram most LLAGN, Seyfert nuclei, PG quasars, and RGs lie in the region occupied by clumpy torus model tracks. However, the mid-IR spectra of some might include contributions from other mechanisms. Most (U)LIRG nuclei in our sample have deeper silicate features and flatter spectral indices than predicted by these models suggesting deeply embedded dust heating sources and/or contribution from star formation. The 11.3micron PAH feature is clearly detected in approximately half of the Seyfert nuclei, LLAGN, and (U)LIRGs. While the RG, PG quasars, and (U)LIRGs in our sample have similar nuclear 12micron luminosities, we do not detect nuclear PAH emission in the RGs and PG quasars.
180 - J. Licandro 2015
The potentially hazardous asteroid (PHA) (99942) Apophis is one of the most remarkable near-Earth asteroids (NEA) in terms of impact hazard. A good determination of its surface thermal inertia is very important in order to evaluate the Yarkovsky effe ct on its orbital evolution. We present thermal infrared observations obtained on January 29, 2013, with CanariCam mid-infrared camera/spectrograph attached to the Gran Telescopio CANARIAS (GTC, Roque de los Muchachos Observatory, La Palma, Spain) using the Si2-8.7, Si6-12.5, and Q1-17.65 filters with the aim of deriving Apophis diameter ($D$), geometric albedo ($p_V$), and thermal inertia ($Gamma$). We performed a detailed thermophysical model analysis of the GTC data combined with previously published thermal data obtained using Herschel Space Observatory PACS instrument at 70, 100, and 160 $mu$m.The thermophysical model fit of the data favors low surface roughness solutions (within a range of roughness slope angles $rms$ between 0.1 and 0.5), and constrains the effective diameter, visible geometric albedo, and thermal inertia of Apophis to be $D_{eff} =$~380 -- 393 m, $p_V = $~0.24--0.33 (assuming absolute magnitude $H = 19.09 pm 0.19$) and $Gamma =$~50 -- 500 Jm$^{-2}$ s$^{-0.5}$ K$^{-1}$, respectively.
91 - D. Asmus , P. Gandhi , A. Smette 2011
High spatial resolution mid-infrared (MIR) 12 mum continuum imaging of low-luminosity active galactic nuclei (LLAGN) obtained by VLT/VISIR is presented. The goal of this investigation is to determine if the nuclear MIR emission of LLAGN is consistent with the existence of a dusty obscuring torus. A sample of 17 nearby LLAGN was selected and combined with archival VISIR data of 9 additional LLAGN with available X-ray measurements. Of the 17 observed LLAGN, 7 are detected, while upper limits are derived for the 10 non-detections. All detections except NGC 3125 appear point-like on a spatial scale of sim 0.35. The detections do not significantly deviate from the known MIR-X-ray correlation but extend it by a factor of sim 10 down to luminosities < 10^41 erg/s with a narrow scatter. The latter is dominated by the uncertainties in the X-ray luminosity. Interestingly, a similar correlation with comparable slope but with a normalization differing by sim 2.6 orders of magnitude has been found for local starburst galaxies. In addition, the VISIR data are compared with lower spatial resolution data from Spitzer/IRS and IRAS. By using a scaled starburst template SED and the PAH 11.3 mum emission line the maximum nuclear star formation contamination to the VISIR photometry is restricted to < 30% for 75% of the LLAGN. Exceptions are NGC 1097 and NGC 1566, which may possess unresolved strong PAH emission. Furthermore, within the uncertainties the MIR-X-ray luminosity ratio is unchanged over more than 4 orders of magnitude in accretion rate. These results are consistent with the existence of the dusty torus in all observed LLAGN, although the jet or accretion disk as origin of the MIR emission cannot be excluded. Finally, the fact that the MIR-X-ray correlation holds for all LLAGN and Seyferts makes it a very useful empirical tool for converting between the MIR and X-ray powers of these nuclei.
We present mid-infrared (MIR, 7.5-13.5 $mu$m) imaging and spectroscopy observations obtained with the CanariCam (CC) instrument on the 10.4m Gran Telescopio CANARIAS for a sample of 20 nearby, MIR bright and X-ray luminous QSOs. We find that for the majority of QSOs the MIR emission is unresolved at angular scales nearly 0.3 arcsec, corresponding to physical scales $<600$ pc. We find that the higher-spatial resolution CC spectra have similar shapes to those obtained with Spitzer/IRS, and hence we can assume that the spectra are not heavily contaminated by extended emission in the host galaxy. We thus take advantage of the higher signal to noise Spitzer/IRS spectra, as a fair representation of the nuclear emission, to decompose it into a combination of active galactic nuclei (AGN), polycyclic aromatic hydrocarbon (PAH) and stellar components. In most cases the AGN is the dominant component, with a median contribution of 85 per cent of the continuum light at MIR (5-15 $mu$m) within the IRS slit. This IR AGN emission is well reproduced by clumpy torus models. We find evidence for significant differences in the parameters that describe the dusty tori of QSOs when compared with the same parameters of Seyfert 1 and 2 nuclei. In particular, we find a lower number of clouds ($N_{0}<12$), steeper radial distribution of clouds ($q=1.5-3.0$), and clouds that are less optically thick ($tau_{V}<100$) than in Seyfert 1, which could be attributed to dusty structures that have been partially evaporated and piled up by the higher radiation field in QSOs. We find that the combination of the angular width $sigma_{torus}$, viewing angle $i$, and number of clouds along the equatorial line $N_{0}$, produces large escape probabilities ($P_{esc} > 2$ per cent) and low geometrical covering factors ($f_{2}<0.6$), as expected for AGN with broad lines in their optical spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا