ﻻ يوجد ملخص باللغة العربية
Measurements of the redshift-space galaxy clustering have been a prolific source of cosmological information in recent years. Accurate covariance estimates are an essential step for the validation of galaxy clustering models of the redshift-space two-point statistics. Usually, only a limited set of accurate N-body simulations is available. Thus, assessing the data covariance is not possible or only leads to a noisy estimate. Further, relying on simulated realisations of the survey data means that tests of the cosmology dependence of the covariance are expensive. With these points in mind, this work presents a simple theoretical model for the linear covariance of anisotropic galaxy clustering observations with synthetic catalogues. Considering the Legendre moments (`multipoles) of the two-point statistics and projections into wide bins of the line-of-sight parameter (`clustering wedges), we describe the modelling of the covariance for these anisotropic clustering measurements for galaxy samples with a trivial geometry in the case of a Gaussian approximation of the clustering likelihood. As main result of this paper, we give the explicit formulae for Fourier and configuration space covariance matrices. To validate our model, we create synthetic HOD galaxy catalogues by populating the haloes of an ensemble of large-volume N-body simulations. Using linear and non-linear input power spectra, we find very good agreement between the model predictions and the measurements on the synthetic catalogues in the quasi-linear regime.
We derive analytic covariance matrices for the $N$-Point Correlation Functions (NPCFs) of galaxies in the Gaussian limit. Our results are given for arbitrary $N$ and projected onto the isotropic basis functions of Cahn & Slepian (2020), recently show
Accurate covariance matrices for two-point functions are critical for inferring cosmological parameters in likelihood analyses of large-scale structure surveys. Among various approaches to obtaining the covariance, analytic computation is much faster
When analyzing galaxy clustering in multi-band imaging surveys, there is a trade-off between selecting the largest galaxy samples (to minimize the shot noise) and selecting samples with the best photometric redshift (photo-z) precision, which general
With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.
Upcoming weak lensing surveys will probe large fractions of the sky with unprecedented accuracy. To infer cosmological constraints, a large ensemble of survey simulations are required to accurately model cosmological observables and their covariances