ترغب بنشر مسار تعليمي؟ اضغط هنا

The theory of variational hybrid quantum-classical algorithms

99   0   0.0 ( 0 )
 نشر من قبل Jarrod McClean
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many quantum algorithms have daunting resource requirements when compared to what is available today. To address this discrepancy, a quantum-classical hybrid optimization scheme known as the quantum variational eigensolver was developed with the philosophy that even minimal quantum resources could be made useful when used in conjunction with classical routines. In this work we extend the general theory of this algorithm and suggest algorithmic improvements for practical implementations. Specifically, we develop a variational adiabatic ansatz and explore unitary coupled cluster where we establish a connection from second order unitary coupled cluster to universal gate sets through relaxation of exponential splitting. We introduce the concept of quantum variational error suppression that allows some errors to be suppressed naturally in this algorithm on a pre-threshold quantum device. Additionally, we analyze truncation and correlated sampling in Hamiltonian averaging as ways to reduce the cost of this procedure. Finally, we show how the use of modern derivative free optimization techniques can offer dramatic computational savings of up to three orders of magnitude over previously used optimization techniques.



قيم البحث

اقرأ أيضاً

In order to support near-term applications of quantum computing, a new compute paradigm has emerged--the quantum-classical cloud--in which quantum computers (QPUs) work in tandem with classical computers (CPUs) via a shared cloud infrastructure. In t his work, we enumerate the architectural requirements of a quantum-classical cloud platform, and present a framework for benchmarking its runtime performance. In addition, we walk through two platform-level enhancements, parametric compilation and active qubit reset, that specifically optimize a quantum-classical architecture to support variational hybrid algorithms (VHAs), the most promising applications of near-term quantum hardware. Finally, we show that integrating these two features into the Rigetti Quantum Cloud Services (QCS) platform results in considerable improvements to the latencies that govern algorithm runtime.
Quantum computers can exploit a Hilbert space whose dimension increases exponentially with the number of qubits. In experiment, quantum supremacy has recently been achieved by the Google team by using a noisy intermediate-scale quantum (NISQ) device with over 50 qubits. However, the question of what can be implemented on NISQ devices is still not fully explored, and discovering useful tasks for such devices is a topic of considerable interest. Hybrid quantum-classical algorithms are regarded as well-suited for execution on NISQ devices by combining quantum computers with classical computers, and are expected to be the first useful applications for quantum computing. Meanwhile, mitigation of errors on quantum processors is also crucial to obtain reliable results. In this article, we review the basic results for hybrid quantum-classical algorithms and quantum error mitigation techniques. Since quantum computing with NISQ devices is an actively developing field, we expect this review to be a useful basis for future studies.
The maturation of analytical derivative theory over the past few decades has enabled classical electronic structure theory to provide accurate and efficient predictions of a wide variety of observable properties. However, classical implementations of analytical derivative theory take advantage of explicit computational access to the approximate electronic wavefunctions in question, which is not possible for the emerging case of hybrid quantum/classical methods. Here, we develop an efficient Lagrangian-based approach for analytical first derivatives of hybrid quantum/classical methods using only observable quantities from the quantum portion of the algorithm. Specifically, we construct the key first-derivative property of the nuclear energy gradient for the recently-developed multistate, contracted variant of the variational quantum eigensolver (MC-VQE) within the context of the ab initio exciton model (AIEM). We show that a clean separation between the quantum and classical parts of the problem is enabled by the definition of an appropriate set of relaxed density matrices, and show how the wavefunction response equations in the quantum part of the algorithm (coupled-perturbed MC-VQE or CP-MC-VQE equations) are decoupled from the wavefunction response equations and and gradient perturbations in the classical part of the algorithm. We explore the magnitudes of the Hellmann-Feynman and response contributions to the gradients in quantum circuit simulations of MC-VQE+AIEM and demonstrate a quantum circuit simulator implementation of adiabatic excited state dynamics with MC-VQE+AIEM.
Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One example of such a hybrid quantum-classical approach is the variational quantum eigensolver (VQE) built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed among the candidates for first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even non-systematic decoherence errors by introducing an exactly solvable channel model of variational state preparation. Moreover, we show how variational quantum-classical approaches fit in a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions with additional classical resources. We demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error correction codes.
Applications such as simulating large quantum systems or solving large-scale linear algebra problems are immensely challenging for classical computers due their extremely high computational cost. Quantum computers promise to unlock these applications , although fault-tolerant quantum computers will likely not be available for several years. Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth. Variational Quantum Algorithms (VQAs), which employ a classical optimizer to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints. VQAs have now been proposed for essentially all applications that researchers have envisioned for quantum computers, and they appear to the best hope for obtaining quantum advantage. Nevertheless, challenges remain including the trainability, accuracy, and efficiency of VQAs. In this review article we present an overview of the field of VQAs. Furthermore, we discuss strategies to overcome their challenges as well as the exciting prospects for using them as a means to obtain quantum advantage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا