ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift detection of the super-swift switch-on of the super-soft phase in nova V745 Sco (2014)

87   0   0.0 ( 0 )
 نشر من قبل Kim Page
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K.L. Page




اسأل ChatGPT حول البحث

V745 Sco is a recurrent nova, with the most recent eruption occurring in February 2014. V745 Sco was first observed by Swift a mere 3.7 hr after the announcement of the optical discovery, with the super-soft X-ray emission being detected around four days later and lasting for only ~two days, making it both the fastest follow-up of a nova by Swift and the earliest switch-on of super-soft emission yet detected. Such an early switch-on time suggests a combination of a very high velocity outflow and low ejected mass and, together with the high effective temperature reached by the super-soft emission, a high mass white dwarf (>1.3 M_sun). The X-ray spectral evolution was followed from an early epoch where shocked emission was evident, through the entirety of the super-soft phase, showing evolving column density, emission lines, absorption edges and thermal continuum temperature. UV grism data were also obtained throughout the super-soft interval, with the spectra showing mainly emission lines from lower ionization transitions and the Balmer continuum in emission. V745 Sco is compared with both V2491 Cyg (another nova with a very short super-soft phase) and M31N 2008-12a (the most rapidly recurring nova yet discovered). The longer recurrence time compared to M31N 2008-12a could be due to a lower mass accretion rate, although inclination of the system may also play a part. Nova V745 Sco (2014) revealed the fastest evolving super-soft source phase yet discovered, providing a detailed and informative dataset for study.

قيم البحث

اقرأ أيضاً

Swift X-ray observations of the ~60 day super-soft phase of the recurrent nova RS Ophiuchi 2006 show the progress of nuclear burning on the white dwarf in exquisite detail. First seen 26 days after the optical outburst, this phase started with extrem e variability likely due to variable absorption, although intrinsic white dwarf variations are not excluded. About 32 days later, a steady decline in count-rate set in. NLTE model atmosphere spectral fits during the super-soft phase show that the effective temperature of the white dwarf increases from ~65 eV to ~90 eV during the extreme variability phase, falling slowly after about day 60 and more rapidly after day 80. The bolometric luminosity is seen to be approximately constant and close to Eddington from day 45 up to day 60, the subsequent decline possibly signalling the end of extensive nuclear burning. Before the decline, a multiply-periodic, ~35 s modulation of the soft X-rays was present and may be the signature of a nuclear fusion driven instability. Our measurements are consistent with a white dwarf mass near the Chandrasekhar limit; combined with a deduced accumulation of mass transferred from its binary companion, this leads us to suggest RS Oph is a strong candidate for a future supernova explosion. The main uncertainty now is whether the WD is the CO type necessary for a SN Ia. This may be confirmed by detailed abundance analyses of spectroscopic data from the outbursts.
Here we report that the most rapidly recurring nova, M31N 2008-12a, which erupts annually, is surrounded by a nova super-remnant which demonstrates that M31N 2008-12a has erupted with high frequency for millions of years.
177 - M. Orio , V. Rana , K. L. Page 2014
The fast recurrent nova V745 Sco was observed in the 3-79 keV X-rays band with NuSTAR 10 days after the optical discovery. The measured X-ray emission is consistent with a collisionally ionized optically thin plasma at temperature of about 2.7 keV. A prominent iron line observed at 6.7 keV does not require enhanced iron in the ejecta. We attribute the X-ray flux to shocked circumstellar material. No X-ray emission was observed at energies above 20 keV, and the flux in the 3-20 keV range was about 1.6 $times$ 10$^{-11}$ erg cm$^{-2}$ s$^{-1}$. The emission measure indicates an average electron density of order of 10$^7$ cm$^{-3}$. The X-ray flux in the 0.3-10 keV band almost simultaneously measured with Swift was about 40 times larger, mainly due to the luminous central supersoft source emitting at energy below 1 keV. The fact that the NuSTAR spectrum cannot be fitted with a power law, and the lack of hard X-ray emission, allow us to rule out Comptonized gamma rays, and to place an upper limit of the order of 10$^{-11}$ erg cm$^{-2}$ s$^{-1}$ on the gamma-ray flux of the nova on the tenth day of the outburst.
The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended and Chandra spectr a are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 10^7K. X-ray line profiles are more sharply peaked than expected for a spherically-symmetric blast wave, with a full width at zero intensity of approximately 2400 km/s, a full width at half maximum of 1200 +/- 30 km/s and an average net blueshift of 165 +/- 10 km/s. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray emitting material is aligned close to the plane of the sky and most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations and near-infrared line widths indicates the explosion energy was approximately 10^43 erg, and confirms an ejected mass of approximately 10^-7 Msun. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating the white dwarf is gaining mass and is a supernova Type 1a progenitor candidate.
The recurrent nova (RN) V745 Scorpii underwent its third known outburst on 2014 February 6. Infrared monitoring of the eruption on an almost daily basis, starting from 1.3d after discovery, shows the emergence of a powerful blast wave generated by th e high velocity nova ejecta exceeding 4000 kms$^{-1}$ plowing into its surrounding environment. The temperature of the shocked gas is raised to a high value exceeding 10$^{8}$K immediately after outburst commencement. The energetics of the outburst clearly surpass those of similar symbiotic systems like RS Oph and V407 Cyg which have giant secondaries. The shock does not show a free-expansion stage but rather shows a decelerative Sedov-Taylor phase from the beginning. Such strong shockfronts are known to be sites for $gamma$ ray generation. V745 Sco is the latest nova, apart from five other known novae, to show $gamma$ ray emission. It may be an important testbed to resolve the crucial question whether all novae are generically $gamma$ ray emitters by virtue of having a circumbinary reservoir of material that is shocked by the ejecta rather than $gamma$ ray generation being restricted to only symbiotic systems with a shocked red giant (RG) wind. The lack of a free-expansion stage favors V745 Sco to have a density enhancement around the white dwarf (WD), above that contributed by a RG wind. Our analysis also suggests that the WD in V745 Sco is very massive and a potential progenitor for a future SN Ia explosion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا