ﻻ يوجد ملخص باللغة العربية
The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strongly layer-dependent surface potential of mono- and few-layer phosphorene on gold, which confirms with the reported theoretical prediction. At the same time, we used an optical way - photoluminescence (PL) spectroscopy to probe the charge transfer in phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.
Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new twodimensional (2D) material that holds promise for electronic and photonic technology. Here we experimentally demonstrate that the electronic structure of few-laye
Using first-principles calculations, we have investigated the evolution of band-edges in few-layer phosphorene as a function of the number of P layers. Our results predict that monolayer phosphorene is an indirect band gap semiconductor and its valen
The intrinsic magnetic layered topological insulator MnBi2Te4 with nontrivial topological properties and magnetic order has become a promising system for exploring exotic quantum phenomena such as quantum anomalous Hall effect. However, the layer-dep
When a crystal becomes thinner and thinner to the atomic level, peculiar phenomena discretely depending on its layer-numbers (n) start to appear. The symmetry and wave functions strongly reflect the layer-numbers and stacking order, which brings us a
Based on extensive first principle calculations, we explore the thickness dependent effective di- electric constant and slab polarizability of few layer black phosphorene. We find that the dielectric constant in ultra-thin phosphorene is thickness de