ترغب بنشر مسار تعليمي؟ اضغط هنا

A very luminous magnetar-powered supernova associated with an ultra-long gamma-ray burst

90   0   0.0 ( 0 )
 نشر من قبل Jochen Greiner
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new class of ultra-long duration (>10,000 s) gamma-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than normal long gamma-ray bursts or in the tidal disruptions of a star. No clear supernova had yet been associated with an ultra-long gamma-ray burst. Here we report that a supernova (2011kl) was associated with the ultra-long duration burst 111209A, at z=0.677. This supernova is more than 3 times more luminous than type Ic supernovae associated with long gamma-ray bursts, and its spectrum is distinctly different. The continuum slope resembles those of super-luminous supernovae, but extends farther down into the rest-frame ultra-violet implying a low metal content. The light curve evolves much more rapidly than super-luminous supernovae. The combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.



قيم البحث

اقرأ أيضاً

We report the discovery of the nearby long, soft GRB 100316D, and the subsequent unveiling of its host galaxy and associated supernova. We study the extremely unusual prompt emission with time-resolved gamma-ray to X-ray spectroscopy and find that a thermal component in addition to the synchrotron spectrum is required. The host galaxy is a bright, blue galaxy with a highly disturbed morphology. From optical photometry and spectroscopy we provide an accurate astrometry and redshift, and derive the key host properties of star formation rate and stellar age. We compare our findings for this GRB-SN with the well known previous case of GRB 060218. GRB 100316D is an important addition to the current sparse sample of spectroscopically confirmed GRB-SNe, from which a better understanding of long GRB progenitors and the GRB-SN connection can be gleaned.
We study the most luminous known supernova (SN) associated with a gamma-ray burst (GRB), SN 2011kl. The photospheric velocity of SN 2011kl around peak brightness is $21,000pm7,000$ km s$^{-1}$. Owing to different assumptions related to the light-curv e (LC) evolution (broken or unbroken power-law function) of the optical afterglow of GRB 111209A, different techniques for the LC decomposition, and different methods (with or without a near-infrared contribution), three groups derived three different bolometric LCs for SN 2011kl. Previous studies have shown that the LCs without an early-time excess preferred a magnetar model, a magnetar+$^{56}$Ni model, or a white dwarf tidal disruption event model rather than the radioactive heating model. On the other hand, the LC shows an early-time excess and dip that cannot be reproduced by the aforementioned models, and hence the blue-supergiant model was proposed to explain it. Here we reinvestigate the energy sources powering SN 2011kl. We find that the two LCs without the early-time excess of SN 2011kl can be explained by the magnetar+$^{56}$Ni model, and the LC showing the early excess can be explained by the magnetar+$^{56}$Ni model taking into account the cooling emission from the shock-heated envelope of the SN progenitor, demonstrating that this SN might primarily be powered by a nascent magnetar.
Metal-poor massive stars may typically end up their lives as blue supergiants (BSGs). Gamma-ray bursts (GRBs) from such progenitors could have ultra-long duration of relativistic jets. For example Population III (Pop III) GRBs at z ~ 10-20 might be o bservable as X-ray rich events with a typical duration of T_90 ~ 10^4(1+z) sec. Recent GRB111209A at z = 0.677 has an ultra long duration of T_90 ~ 2.5*10^4 sec so that it have been suggested that the progenitor might be a metal-poor BSGs in the local universe. Here, we suggest luminous UV/optical/infrared emissions associated with such a new class of GRB from metal poor BSGs. Before the jet head breaks out the progenitor envelope, the energy injected by the jet is stored in a hot-plasma cocoon, which finally emerges and expands as a baryon-loaded fireball. We show that the photospheric emissions from the cocoon fireball could be intrinsically very bright (L_peak ~ 10^(42-44) erg/sec) in UV/optical bands (E_peak ~ 10 eV) with a typical duration of ~ 100 days in the rest frame. Such cocoon emissions from Pop III GRB might be detectable in infrared bands at ~ years after Pop III GRBs at up to z ~ 15 by up-coming facilities like JWST. We also suggest that GRB111209A might have been rebrightening in UV/optical bands up to an AB magnitude of < 26. The cocoon emissions from local metal-poor BSGs might have been already observed as luminous supernovae without GRB since they can be seen from the off-axis direction of the jet.
Long GRBs (LGRBs) have typical duration of ~ 30 s and some of them are associated with hypernovae, like Type Ic SN 1998bw. Wolf-Rayet stars are the most plausible LGRB progenitors, since the free-fall time of the envelope is consistent with the durat ion, and the natural outcome of the progenitor is a Type Ic SN. While a new population of ultra-long GRBs (ULGRBs), GRB 111209A, GRB 101225A, and GRB 121027A, has a duration of ~ 10^4 s, two of them are accompanied by superluminous-supernova (SLSN) like bumps, which are <~ 10 times brighter than typical hypernovae. Wolf-Rayet progenitors cannot explain ULGRBs because of too long duration and too bright SN-like bump. A blue supergiant (BSG) progenitor model, however, can explain the duration of ULGRBs. Moreover, SLSN-like bump can be attributed to the so-called cocoon-fireball photospheric emissions (CFPEs). Since a large cocoon is inevitably produced during the relativistic jet piercing though the BSG envelope, this component can be a smoking-gun evidence of BSG model for ULGRBs. In this paper, we examine u, g, r, i, and J-band light curves of three ULGRBs and demonstrate that they can be fitted quite well by our BSG model with the appropriate choices of the jet opening angle and the number density of the ambient gas. In addition, we predict that for 121027A, SLSN-like bump could have been observed for ~ 20 - 80 days after the burst. We also propose that some SLSNe might be CFPEs of off-axis ULGRBs without visible prompt emission.
Future missions for long gammma-ray burst (GRB) observations at high redshift such as HiZ-GUNDAM and THESEUS will provide clue to the star formation history in our universe. In this paper focusing on high redshift (z>8) GRBs, we calculate the detecti on rate of long GRBs by future observations, considering both Population (Pop) I&II stars and Pop III stars as GRB progenitors. For the Pop I&II star formation rate (SFR), we adopt an up-to-date model of high-redshift SFR based on the halo mass function and dark matter accretion rate obtained from cosmological simulations. We show that the Pop I&II GRB rate steeply decreases with redshift. This would rather enable us to detect the different type of GRBs, Pop III GRBs, at very high redshift. If 10% or more Pop III stars die as an ultra-long GRB, the future missions would detect such GRBs in one year in spite of their low fluence. More luminous GRBs are expected from massive compact Pop III stars produced via the binary merger. In our conventional case, the detection rate of such luminous GRBs is 3-20 /yr (z>8). Those future observations contribute to revealing of the Pop III star formation history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا