ترغب بنشر مسار تعليمي؟ اضغط هنا

The Carina Project IX: on Hydrogen and helium burning variables

93   0   0.0 ( 0 )
 نشر من قبل Giuseppina Coppola
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new multi-band (UBVI) time-series data of helium burning variables in the Carina dwarf spheroidal galaxy. The current sample includes 92 RR Lyrae-six of them are new identifications-and 20 Anomalous Cepheids, one of which is new identification. The analysis of the Bailey diagram shows that the luminosity amplitude of the first overtone component in double-mode variables is located along the long-period tail of regular first overtone variables, while the fundamental component is located along the short-period tale of regular fundamental variables. This evidence further supports the transitional nature of these objects. Moreover, the distribution of Carina double-mode variables in the Petersen diagram (P_1/P_0 vs P_0) is similar to metal-poor globulars (M15, M68), to the dwarf spheroidal Draco and to the Galactic Halo. This suggests that the Carina old stellar population is metal-poor and affected by a small spread in metallicity. We use trigonometric parallaxes for five field RR Lyrae stars to provide an independent estimate of the Carina distance using the observed reddening free Period--Wesenheit [PW, (BV)] relation. Theory and observations indicate that this diagnostic is independent of metallicity. We found a true distance modulus of mu=20.01pm0.02 (standard error of the mean) pm0.05 (standard deviation) mag. We also provided independent estimates of the Carina true distance modulus using four predicted PW relations (BV, BI, VI, BVI) and we found: mu=(20.08pm0.007pm0.07) mag, mu=(20.06pm0.006pm0.06) mag, mu=(20.07pm0.008pm0.08) mag and mu=(20.06pm0.006pm0.06) mag. Finally, we identified more than 100 new SX Phoenicis stars that together with those already known in the literature (340) make Carina a fundamental laboratory to constrain the evolutionary and pulsation properties of these transitional variables.



قيم البحث

اقرأ أيضاً

It is unknown whether or not low-mass stars can form at low metallicity. While theoretical simulations of Population III (Pop III) star formation show that protostellar disks can fragment, it is impossible for those simulations to discern if those fr agments survive as low-mass stars. We report the discovery of a low-mass star on a circular orbit with orbital period P = 34.757 +/- 0.010 days in the ultra metal-poor (UMP) single-lined spectroscopic binary system 2MASS J18082002--5104378. The secondary star 2MASS J18082002--5104378 B has a mass M_2 = 0.14_{-0.01}^{+0.06} M_Sun, placing it near the hydrogen-burning limit for its composition. The 2MASS J18082002--5104378 system is on a thin disk orbit as well, making it the most metal-poor thin disk star system by a considerable margin. The discovery of 2MASS J18082002--5104378 B confirms the existence of low-mass UMP stars and its short orbital period shows that fragmentation in metal-poor protostellar disks can lead to the formation and survival of low-mass stars. We use scaling relations for the typical fragment mass and migration time along with published models of protostellar disks around both UMP and primordial composition stars to explore the formation of low-mass Pop III stars via disk fragmentation. We find evidence that the survival of low-mass secondaries around solar-mass UMP primaries implies the survival of solar-mass secondaries around Pop III primaries with masses 10 M_Sun < M_Star < 100 M_Sun. If true, this inference suggests that solar-mass Pop III stars formed via disk fragmentation could survive to the present day.
Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).
Trumpler 16 is a well--known rich star cluster containing the eruptive supergiant $eta$ Carinae and located in the Carina star-forming complex. In the context of the Chandra Carina Complex Project, we study Trumpler 16 using new and archival X-ray da ta. A revised X-ray source list of the Trumpler 16 region contains 1232 X-ray sources including 1187 likely Carina members. These are matched to 1047 near-infrared counterparts detected by the HAWK-I instrument at the VLT allowing for better selection of cluster members. The cluster is irregular in shape. Although it is roughly circular, there is a high degree of sub-clustering, no noticeable central concentration and an extension to the southeast. The high--mass stars show neither evidence of mass segregation nor evidence of strong differential extinction. The derived power-law slope of the X-ray luminosity function for Trumpler 16 reveals a much steeper function than the Orion Nebula Cluster implying different ratio of solar- to higher-mass stars. We estimate the total Trumpler 16 pre-main sequence population to be > 6500 Class II and Class III X-ray sources. An overall K-excess disk frequency of ~ 8.9% is derived using the X-ray selected sample, although there is some variation among the sub-clusters, especially in the Southeastern extension. X-ray emission is detected from 29 high--mass stars with spectral types between B2 and O3.
About 1% of giant stars have been shown to have large surface Li abundances, which is unexpected according to standard stellar evolution models. Several scenarios for lithium production have been proposed, but it is still unclear why these Li-rich gi ants exist. A missing piece in this puzzle is the knowledge of the exact stage of evolution of these stars. Using low-and-high-resolution spectroscopic observations, we have undertaken a survey of lithium-rich giants in the Kepler field. In this letter, we report the finding of the first confirmed Li-rich core-helium-burning giant, as revealed by asteroseismic analysis. The evolutionary timescales constrained by its mass suggest that Li-production most likely took place through non-canonical mixing at the RGB-tip, possibly during the helium flash.
We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (dv sim 300 km/s) emission lines from the circumstellar ring, broad (dv sim 10 -- 20 x 10^3 km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise (> 40 per resolution element) broad LyA emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at lambda > 1350A can be explained by HI 2-photon emission from the same region. We confirm our earlier, tentative detection of NV lambda 1240 emission from the reverse shock and we present the first detections of broad HeII lambda1640, CIV lambda1550, and NIV] lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The NV/H-alpha line ratio requires partial ion-electron equilibration (T_{e}/T_{p} approx 0.14 - 0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance ratio may have been stratified prior to the ring expulsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expulsion of the circumstellar ring.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا