ﻻ يوجد ملخص باللغة العربية
N-doped single/multi-walled carbon nanotubes (CNTs) were studied for long time from synthesis to properties. However, the stability of N in the CNT lattice still needs further developments. In this work, to obtain more stable N-doped CNTs, concentric double-walled (DW) CNTs with more N were synthesized using benzylamine as C and N source. In order to test the stability of N-doped DWCNTs, high-temperature annealing in vacuum was performed. By XPS and Raman spectroscopic measurements, we found that the N-doped DWCNTs are still stable under 1500 $,^{circ}mathrm{C}$: the graphitic N does not change at all, the molecular N is partly removed, and the pyridinic N ratio greatly increases by more than two times. The reason could be that the N atoms from the surrounded N-contained materials combine into the CNT lattice during the annealing. Compared with the undoped DWCNTs, no Raman frequency shift was observed for the RBM, the G-band, and the G-band of the N-doped DWCNTs.
The radial-breathing-like phonon modes (RBLMs) of the double-walled carbon nanotubes are studied in a simple analytical model, in which the interaction force constants (FCs) can be obtained analytically from the continuous model. The RBLMs frequencie
Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically-resolved electron energy-loss spectroscopy to detect individual nitrogen dop
We report experimental measurements of electronic Raman scattering under resonant conditions by electrons in individual single-walled carbon nanotubes (SWNTs). The inelastic Raman scattering at low frequency range reveals a single particle excitation
Recent years have seen the development of several experimental systems capable of tuning local parameters of quantum Hamiltonians. Examples include ultracold atoms, trapped ions, superconducting circuits, and photonic crystals. By design, these syste
We present an experimental investigation on the scaling of resistance in individual single walled carbon nanotube devices with channel lengths that vary four orders of magnitude on the same sample. The electron mean free path is obtained from the lin