ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronagraphic demonstration experiment using aluminum mirrors for space infrared astronomical observations

112   0   0.0 ( 0 )
 نشر من قبل Shinji Oseki
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For future space infrared astronomical coronagraphy, we perform experimental studies on the application of aluminum mirrors to a coronagraph. Cooled reflective optics is required for broad-band mid-infrared observations in space, while high-precision optics is required for coronagraphy. For the coronagraph instrument originally proposed for the next-generation infrared astronomical satellite project SPICA (SCI: SPICA Coronagraph Instrument), we fabricated and evaluated the optics consisting of high-precision aluminum off-axis mirrors with diamond-turned surfaces, and conducted a coronagraphic demonstration experiment using the optics with a coronagraph mask. We first measured the wave front errors (WFEs) of the aluminum mirrors with a He-Ne Fizeau interferometer to confirm that the power spectral densities of the WFEs satisfy the SCI requirements. Then we integrated the mirrors into an optical system and evaluated the overall performance of the system. As a result, we estimate the total WFE of the optics to be 33 nm (rms), each mirror contributing 10-20 nm (rms) for the central 14 mm area of the optics, and obtain a contrast of 10^(-5.4) as a coronagraph in the visible light. At a wavelength of 5 um, the coronagraphic system is expected to achieve a contrast of ~10^(-7) based on our model calculation with the measured optical performance. Thus our experiment demonstrates that aluminum mirror optics is applicable to a highly WFE-sensitive instrument such as a coronagraph in space.

قيم البحث

اقرأ أيضاً

3D printing, also called additive manufacturing, offers a new vision for optical fabrication in term of achievable optical quality and reduction of weight and cost. In this paper we describe two different ways to use this technique in the fabrication process. The first method makes use of 3D printing in the fabrication of warping harnesses for stress polishing, and we apply that to the fabrication of the WFIRST coronagraph off axis parabolas. The second method considers a proof of concept for 3D printing of lightweight X-Ray mirrors, targeting the next generation of X-rays telescopes. Stress polishing is well suited for the fabrication of the high quality off axis parabolas required by the coronagraph to image exoplanets.. Here we describe a new design of warping harness which can generate astigmatism and coma with only one actuator. The idea is to incorporate 3D printing in the manufacturing of the warping harness. The method depicted in this paper demonstrates that we reach the tight precision required at the mirrors surface. Moreover the error introduced by the warping harness fabricated by 3D printing does not impact the final error budget. Concerning the proof of concept project, we investigate 3D printing towards lightweight X-ray mirrors. We present the surface metrology of test samples fabricated by stereo lithography (SLA) and Selective Laser Sintering (SLS) with different materials. The lightweighting of the samples is composed of a series of arches. By complementing 3D printing with finite element analysis topology optimization we can simulate a specific optimum shape for the given input parameters and external boundary conditions. The next set of prototypes is designed taking to account the calculation of topology optimisation.
Mid-infrared (IR) array detectors have been used for astronomical observations in space. However, the uniformities of their spectral response curves have not been investigated in detail, the understanding of which is important for spectroscopic obser vations using large array formats. We characterize the spectral responses of all the pixels in IR array detectors using a Fourier transform infrared spectrometer and cryogenic optics for measurements at high signal-to-noise ratios. We measured the spectral responses of the Si:As impurity band conduction (IBC) array, a flight back-up detector for AKARI/IRC. As a result, we find that the Si:As array has intrinsic variations in the spectral response along the row and column directions of the array. We also find that the cutoff wavelength of the Si:As IBC array depends on the intensity of the incident light.
89 - G. van Harten , F. Snik , 2009
In polarimetry it is important to characterize the polarization properties of the instrument itself to disentangle real astrophysical signals from instrumental effects. This article deals with the accurate measurement and modeling of the polarization properties of real aluminum mirrors, as used in astronomical telescopes. Main goals are the characterization of the aluminum oxide layer thickness at different times after evaporation and its influence on the polarization properties of the mirror. The full polarization properties of an aluminum mirror are measured with Mueller matrix ellipsometry at different incidence angles and wavelengths. The best fit of theoretical Mueller matrices to all measurements simultaneously is obtained by taking into account a model of bulk aluminum with a thin aluminum oxide film on top of it. Full Mueller matrix measurements of a mirror are obtained with an absolute accuracy of ~1% after calibration. The determined layer thicknesses indicate logarithmic growth in the first few hours after evaporation, but it remains stable at a value of 4.12+/-0.08 nm on the long term. Although the aluminum oxide layer is established to be thin, it is necessary to consider it to accurately describe the mirrors polarization properties.
Context. High-contrast imaging is currently the only available technique for the study of the thermodynamical and compositional properties of exoplanets in long-period orbits. The SPICES project is a coronagraphic space telescope dedicated to the spe ctro-polarimetric analysis of gaseous and icy giant planets as well as super-Earths at visible wavelengths. So far, studies for high-contrast imaging instruments have mainly focused on technical feasibility because of the challenging planet/star flux ratio of 10-8-10-10 required at short separations (200 mas or so) to image cold exoplanets. However, the analysis of planet atmospheric/surface properties has remained largely unexplored. Aims. The aim of this paper is to determine which planetary properties SPICES or an equivalent direct imaging mission can measure, considering realistic reflected planet spectra and instrument limitation. Methods. We use numerical simulations of the SPICES instrument concept and theoretical planet spectra to carry out this performance study. Results. We find that the characterization of the main planetary properties (identification of molecules, effect of metallicity, presence of clouds and type of surfaces) would require a median signal-to-noise ratio of at least 30. In the case of a solar-type star leq 10 pc, SPICES will be able to study Jupiters and Neptunes up to ~5 and ~2 AU respectively. It would also analyze cloud and surface coverage of super-Earths of radius 2.5 RE at 1 AU. Finally, we determine the potential targets in terms of planet separation, radius and distance for several stellar types. For a Sun analog, we show that SPICES could characterize Jupiters (M geq 30 ME) as small as 0.5 Jupiter radii at ~2 AU up to 10 pc, and super-Earths at 1-2 AU for the handful of stars that exist within 4-5 pc. Potentially, SPICES could perform analysis of a hypothetical Earth-size planet around alpha Cen A and B.
Thomas Youngs slit experiment lies at the heart of classical interference and quantum mechanics. Over the last fifty years, it has been shown that particles (e.g. photons, electrons, large molecules), even individual particles, generate an interferen ce pattern at a distant screen after passage through a double slit, thereby demonstrating wave-particle duality. We revisit this famous experiment by replacing both slits with single-mode fibre inputs to two independent quantum memories that are capable of storing the incident electromagnetic fields amplitude and phase as a function of time. At a later time, the action is reversed: the quantum memories are read out in synchrony and the single-mode fibre outputs are allowed to interact consistent with the original observation. In contrast to any classical memory device, the write and read processes of a quantum memory are non-destructive and hence, preserve the photonic quantum states. In principle, with sufficiently long storage times and sufficiently high photonic storage capacity, quantum memories operating at widely separated telescopes can be brought together to achieve optical interferometry over arbitrarily long baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا