ترغب بنشر مسار تعليمي؟ اضغط هنا

Groups with near exponential residual finiteness growth

150   0   0.0 ( 0 )
 نشر من قبل Aglaia Myropolska
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A function $mathbb{N} to mathbb{N}$ is near exponential if it is bounded above and below by functions of the form $2^{n^c}$ for some $c > 0$. In this article we develop tools to recognize the near exponential residual finiteness growth in groups acting on rooted trees. In particular, we show the near exponential residual finiteness growth for certain branch groups, including the first Grigorchuk group, the family of Gupta-Sidki groups and their variations, and Fabrykowski-Gupta groups. We also show that the family of Gupta-Sidki p-groups, for $pgeq 5$, have super-exponential residual finiteness growths.



قيم البحث

اقرأ أيضاً

Let $G$ be a virtually special group. Then the residual finiteness growth of $G$ is at most linear. This result cannot be found by embedding $G$ into a special linear group. Indeed, the special linear group $text{SL}_k(mathbb{Z})$, for $k > 2$, has residual finiteness growth $n^{k-1}$.
Full residual finiteness growth of a finitely generated group $G$ measures how efficiently word metric $n$-balls of $G$ inject into finite quotients of $G$. We initiate a study of this growth over the class of nilpotent groups. When the last term of the lower central series of $G$ has finite index in the center of $G$ we show that the growth is precisely $n^b$, where $b$ is the product of the nilpotency class and dimension of $G$. In the general case, we give a method for finding an upper bound of the form $n^b$ where $b$ is a natural number determined by what we call a terraced filtration of $G$. Finally, we characterize nilpotent groups for which the word growth and full residual finiteness growth coincide.
121 - Kasia Jankiewicz 2020
We show that many 2-dimensional Artin groups are residually finite. This includes 3-generator Artin groups with labels $geq$ 3 where either at least one label is even, or at most one label is equal 3. As a first step towards residual finiteness we sh ow that these Artin groups, and many more, split as free products with amalgamation or HNN extensions of finite rank free groups. Among others, this holds for all large type Artin groups with defining graph admitting an orientation, where each simple cycle is directed.
We give several sufficient conditions for uniform exponential growth in the setting of virtually torsion-free hierarchically hyperbolic groups. For example, any hierarchically hyperbolic group that is also acylindrically hyperbolic has uniform expone ntial growth. In addition, we provide a quasi-isometric characterizations of hierarchically hyperbolic groups without uniform exponential growth. To achieve this, we gain new insights on the structure of certain classes of hierarchically hyperbolic groups. Our methods give a new unified proof of uniform exponential growth for several examples of groups with notions of non-positive curvature. In particular, we obtain the first proof of uniform exponential growth for certain groups that act geometrically on CAT(0) cubical groups of dimension 3 or more. Under additional hypotheses, we show that a quantitative Tits alternative holds for hierarchically hyperbolic groups.
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generali zes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا