ﻻ يوجد ملخص باللغة العربية
A function $mathbb{N} to mathbb{N}$ is near exponential if it is bounded above and below by functions of the form $2^{n^c}$ for some $c > 0$. In this article we develop tools to recognize the near exponential residual finiteness growth in groups acting on rooted trees. In particular, we show the near exponential residual finiteness growth for certain branch groups, including the first Grigorchuk group, the family of Gupta-Sidki groups and their variations, and Fabrykowski-Gupta groups. We also show that the family of Gupta-Sidki p-groups, for $pgeq 5$, have super-exponential residual finiteness growths.
Let $G$ be a virtually special group. Then the residual finiteness growth of $G$ is at most linear. This result cannot be found by embedding $G$ into a special linear group. Indeed, the special linear group $text{SL}_k(mathbb{Z})$, for $k > 2$, has residual finiteness growth $n^{k-1}$.
Full residual finiteness growth of a finitely generated group $G$ measures how efficiently word metric $n$-balls of $G$ inject into finite quotients of $G$. We initiate a study of this growth over the class of nilpotent groups. When the last term of
We show that many 2-dimensional Artin groups are residually finite. This includes 3-generator Artin groups with labels $geq$ 3 where either at least one label is even, or at most one label is equal 3. As a first step towards residual finiteness we sh
We give several sufficient conditions for uniform exponential growth in the setting of virtually torsion-free hierarchically hyperbolic groups. For example, any hierarchically hyperbolic group that is also acylindrically hyperbolic has uniform expone
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generali