ﻻ يوجد ملخص باللغة العربية
We propose to create superposition states of over 100 Strontium atoms being in a ground state or metastable optical clock state, using the Kerr-type interaction due to Rydberg state dressing in an optical lattice. The two components of the superposition can differ by of order 300 eV in energy, allowing tests of energy decoherence models with greatly improved sensitivity. We take into account the effects of higher-order nonlinearities, spatial inhomogeneity of the interaction, decay from the Rydberg state, collective many-body decoherence, atomic motion, molecular formation and diminishing Rydberg level separation for increasing principal number.
We analyze spin squeezing via Rydberg dressing in optical lattice clocks with random fractional filling. We compare the achievable clock stability in different lattice geometries, including unity-filled tweezer clock arrays and fractionally filled la
We develop an approach to generate finite-range atomic interactions via optical Rydberg-state excitation and study the underlying excitation dynamics in theory and experiment. In contrast to previous work, the proposed scheme is based on resonant opt
We study electromagnetically induced transparency (EIT) in the 5s$rightarrow$5p$rightarrow$46s ladder system of a cold $^{87}$Rb gas. We show that the resonant microwave coupling between the 46s and 45p states leads to an Autler-Townes splitting of t
We devise a cold-atom approach to realizing a broad range of bi-linear quantum magnets. Our scheme is based on off-resonant single-photon excitation of Rydberg $P$-states (Rydberg-dressing), whose strong interactions are shown to yield controllable X
We propose an interferometric scheme based on an untrapped nano-object subjected to gravity. The motion of the center of mass (c.m.) of the free object is coupled to its internal spin system magnetically, and a free flight scheme is developed based o