ﻻ يوجد ملخص باللغة العربية
Cu(C$_8$H$_6$N$_2$)Cl$_2$, a strong-rung spin-1/2 Heisenberg ladder compound, is probed by means of electron spin resonance (ESR) spectroscopy in the field-induced gapless phase above $H_{c1}$. The temperature dependence of the ESR linewidth is analyzed in the quantum field theory framework, suggesting that the anisotropy of magnetic interactions plays a crucial role, determining the peculiar low-temperature ESR linewidth behavior. In particular, it is argued that the uniform Dzyaloshinskii-Moriya interaction (which is allowed on the bonds along the ladder legs) can be the source of this behavior in Cu(C$_8$H$_6$N$_2$)Cl$_2$.
We have studied electron spin resonance (ESR) absorption spectra for the nonmagnetically diluted strong-leg spin ladder magnet ({C}$_{7}$H$_{10}$N)$_{2}$Cu$_{(1-x)}$Zn$_{x}$Br$_{4}$ (abbreviated as DIMPY) down to 450 mK. Formation of the clusters wit
We report magnetization, specific heat, and NMR measurements of 3-Br-4-F-V [=3-(3-bromo-4-fluorophenyl)-1,5-diphenylverdazyl], a strong-rung S=1/2 Heisenberg spin ladder with ferromagnetic leg interactions. We explain the magnetic and thermodynamic p
We investigate the heat conductivity $kappa$ of the Heisenberg spin-1/2 ladder at finite temperature covering the entire range of inter-chain coupling $J_perp$, by using several numerical methods and perturbation theory within the framework of linear
We report the results of numerical calculations of rung-rung current correlations on a 2-leg t-J ladder with J/t=0.35 for dopings x=0.125 and x=0.19. We find that the amplitude of these correlations decays exponentially. We argue that this can be und
We report experimental and theoretical evidence that Rb$_2$Cu$_2$Mo$_3$O$_{12}$ has a nonmagnetic tetramer ground state of a two-leg ladder comprising antiferromagnetically coupled frustrated spin-$1/2$ chains and exhibits a Haldane spin gap of emerg