ترغب بنشر مسار تعليمي؟ اضغط هنا

Attosecond Quantum-Beat Spectroscopy in Helium

96   0   0.0 ( 0 )
 نشر من قبل Niranjan Shivaram
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of electron wavepackets determines the course of many physical and chemical phenomena and attosecond spectroscopy aims to measure and control such dynamics in real-time. Here, we investigate radial electron wavepacket motion in Helium by using an XUV attosecond pulse train to prepare a coherent superposition of excited states and a delayed femtosecond IR pulse to ionize them. Quantum beat signals observed in the high resolution photoelectron spectrogram allow us to follow the field-free evolution of the bound electron wavepacket and determine the time-dependent ionization dynamics of the low-lying 2p state.



قيم البحث

اقرأ أيضاً

Time-resolved pump-probe measurements of Xe, pumped at 133~nm and probed at 266~nm, are presented. The pump pulse prepared a long-lived hyperfine wavepacket, in the Xe $5p^5(^2P^{circ}_{1/2})6s~^2[1/2]^{circ}_1$ manifold ($E=$77185 cm$^{-1}=$9.57 eV) . The wavepacket was monitored via single-photon ionization, and photoelectron images measured. The images provide angle- and time-resolved data which, when obtained over a large time-window (900~ps), constitute a precision quantum beat spectroscopy measurement of the hyperfine state splittings. Additionally, analysis of the full photoelectron image stack provides a quantum beat imaging modality, in which the Fourier components of the photoelectron images correlated with specific beat components can be obtained. This may also permit the extraction of isotope-resolved photoelectron images in the frequency domain, in cases where nuclear spins (hence beat components) can be uniquely assigned to specific isotopes (as herein), and also provides phase information. The information content of both raw, and inverted, image stacks is investigated, suggesting the utility of the Fourier analysis methodology in cases where images cannot be inverted.
314 - Luca Argenti , Eva Lindroth 2021
We describe a numerical method that simulates the interaction of the helium atom with sequences of femtosecond and attosecond light pulses. The method, which is based on the close-coupling expansion of the electronic configuration space in a B-spline bipolar spherical harmonic basis, can accurately reproduce the excitation and single ionization of the atom, within the electrostatic approximation. The time dependent Schrodinger equation is integrated with a sequence of second-order split-exponential unitary propagators. The asymptotic channel-, energy- and angularly-resolved photoelectron distributions are computed by projecting the wavepacket at the end of the simulation on the multichannel scattering states of the atom, which are separately computed within the same close-coupling basis. This method is applied to simulate the pump-probe ionization of helium in the vicinity of the $2s/2p$ excitation threshold of the He$^+$ ion. This work confirms the qualitative conclusions of one of our earliest publications [L Argenti and E Lindroth, Phys. Rev. Lett. {bf 105}, 53002 (2010)], in which we demonstrated the control of the $2s/2p$ ionization branching-ratio. Here, we take those calculations to convergence and show how correlation brings the periodic modulation of the branching ratios in almost phase opposition. The residual total ionization probability to the $2s+2p$ channels is dominated by the beating between the $sp_{2,3}^+$ and the $sp_{2,4}^+$ doubly excited states, which is consistent with the modulation of the complementary signal in the $1s$ channel, measured in 2010 by Chang and co-workers~[S Gilbertson~emph{et al.}, Phys. Rev. Lett. {bf 105}, 263003 (2010)].
X-ray four-wave mixing signals generated in the $k_1 + k_2 - k_3$ phase-matching direction are simulated for N1s transitions in para-nitroanline and two-ring hydrocarbons disubstituted with an amine and a nitroso groups. The two-dimensional x-ray cor relation spectra (2DXCS) provide background-free probes of couplings between core-electron transitions even for multiple core shells of the same type. Features attributed to couplings between spatially-separated core transitions connected by delocalized valence excitations provide information about molecular geometry and electronic structure unavailable from linear near-edge x-ray absorption (XANES).
We report measurements of energy-dependent attosecond photoionization delays between the two outer-most valence shells of N$_2$O and H$_2$O. The combination of single-shot signal referencing with the use of different metal foils to filter the attosec ond pulse train enables us to extract delays from congested spectra. Remarkably large delays up to 160 as are observed in N$_2$O, whereas the delays in H$_2$O are all smaller than 50 as in the photon-energy range of 20-40 eV. These results are interpreted by developing a theory of molecular photoionization delays. The long delays measured in N$_2$O are shown to reflect the population of molecular shape resonances that trap the photoelectron for a duration of up to $sim$110 as. The unstructured continua of H$_2$O result in much smaller delays at the same photon energies. Our experimental and theoretical methods make the study of molecular attosecond photoionization dynamics accessible.
We study the role of electron-electron correlation in the ground-state of Ne, as well as in photoionization dynamics induced by an attosecond XUV pulse. For a selection of central photon energies around 100 eV, we find that while the mean-field time- dependent Hartree-Fock method provides qualitatively correct results for the total ionization yield, the photoionization cross section, the photoelectron momentum distribution as well as for the time-delay in photoionization, electron-electron correlation is important for a quantitative description of these quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا