ﻻ يوجد ملخص باللغة العربية
We calculate the mean shape of transition paths and first-passage paths based on the one-dimensional Fokker-Planck equation in an arbitrary free energy landscape including a general inhomogeneous diffusivity profile. The transition path ensemble is the collection of all paths that do not revisit the start position $x_A$ and that terminate when first reaching the final position $x_B$. In contrast, a first-passage path can revisit but not cross its start position $x_A$ before it terminates at $x_B$. Our theoretical framework employs the forward and backward Fokker-Planck equations as well as first-passage, passage, last-passage and transition-path time distributions, for which we derive the defining integral equations. We show that the mean time at which the transition path ensemble visits an intermediate position $x$ is equivalent to the mean first-passage time of reaching the starting position $x_A$ from $x$ without ever visiting $x_B$. The mean shape of first-passage paths is related to the mean shape of transition paths by a constant time shift. Since for large barrier height $U$ the mean first-passage time scales exponentially in $U$ while the mean transition path time scales linearly inversely in $U$, the time shift between first-passage and transition path shapes is substantial. We present explicit examples of transition path shapes for linear and harmonic potentials and illustrate our findings by trajectories generated from Brownian dynamics simulations.
We consider a model of an extensible semiflexible filament moving in two dimensions on a motility assay of motor proteins represented explicitly as active harmonic linkers. Their heads bind stochastically to polymer segments within a capture radius,
We study collections of self-propelled rods (SPR) moving in two dimensions for packing fractions less than or equal to 0.3. We find that in the thermodynamical limit the SPR undergo a phase transition between a disordered gas and a novel phase-separa
A stochastic version of the Barkai-Leibler model of chemotaxis receptors in {it E. coli} is studied here to elucidate the effects of intrinsic network noise in their conformational dynamics. It was originally proposed to explain the robust and near-p
Proteins form a very important class of polymers. In spite of major advances in the understanding of polymer science, the protein problem has remained largely unsolved. Here, we show that a polymer chain viewed as a tube not only captures the well-kn
Locomotion and transport of microorganisms in fluids is an essential aspect of life. Search for food, orientation toward light, spreading of off-spring, and the formation of colonies are only possible due to locomotion. Swimming at the microscale occ