ﻻ يوجد ملخص باللغة العربية
In the present paper we introduce a way of identifying quantum phase transitions of many-body systems by means of local time correlations and Leggett-Garg inequalities. This procedure allows to experimentally determine the quantum critical points not only of finite-order transitions but also those of infinite order, as the Kosterlitz-Thouless transition that is not always easy to detect with current methods. By means of simple analytical arguments for a general spin-$1 / 2$ Hamiltonian, and matrix product simulations of one-dimensional $X X Z$ and anisotropic $X Y$ models, we argue that finite-order quantum phase transitions can be determined by singularities of the time correlations or their derivatives at criticality. The same features are exhibited by corresponding Leggett-Garg functions, which noticeably indicate violation of the Leggett-Garg inequalities for early times and all the Hamiltonian parameters considered. In addition, we find that the infinite-order transition of the $X X Z$ model at the isotropic point can be revealed by the maximal violation of the Leggett-Garg inequalities. We thus show that quantum phase transitions can be identified by purely local measurements, and that many-body systems constitute important candidates to observe experimentally the violation of Leggett-Garg inequalities.
Ambiguous measurements do not reveal complete information about the system under test. Their quantum-mechanical counterparts are semi-weak (or in the limit, weak-) measurements and here we discuss their role in tests of the Leggett-Garg inequalities.
Macroscopic realism (MR) is the notion that a time-evolving system possesses definite properties, irrespective of past or future measurements. Quantum mechanical theories can, however, produce violations of MR. Most research to date has focused on a
We investigate how discrete internal degrees of freedom in a quasi-macroscopic system affect the violation of the Leggett--Garg inequality, a test of macroscopic-realism based on temporal correlation functions. As a specific example, we focus on an e
Leggett and Garg derived inequalities that probe the boundaries of classical and quantum physics by putting limits on the properties that classical objects can have. Historically, it has been suggested that Leggett-Garg inequalities are easily violat
We present a path analysis of the condition under which the outcomes of previous observation affect the results of the measurements yet to be made. It is shown that this effect, also known as signalling in time, occurs whenever the earlier measuremen