ترغب بنشر مسار تعليمي؟ اضغط هنا

The effect of broadband soft X-rays in SO2-containing ices: Implication on the photochemistry of ices towards young stellar objects

76   0   0.0 ( 0 )
 نشر من قبل Sergio Pilling
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Pilling




اسأل ChatGPT حول البحث

We investigate the effects produced mainly by broadband soft X-rays up to 2 keV (plus fast (keV) photoelectrons and low-energy (eV) induced secondary electrons) in the ice mixtures containing H2O:CO2:NH3:SO2 (10:1:1:1) at two different temperatures (50 K and 90 K). The experiments are an attempt to simulate the photochemical processes induced by energetic photons in SO2-containing ices present in cold environments in the ices surrounding young stellar objects (YSO) and in molecular clouds in the vicinity of star-forming regions, which are largely illuminated by soft X-rays. The measurements were performed using a high vacuum portable chamber from the Laboratorio de Astroquimica e Astrobiologia (LASA/UNIVAP) coupled to the spherical grating monochromator (SGM) beamline at the Brazilian Synchrotron Light Source (LNLS) in Campinas, Brazil. In-situ analyses were performed by a Fourier transform infrared (FTIR) spectrometer. Sample processing revealed the formation of several organic molecules, including nitriles, acids, and other compounds such as H2O2, H3O+, SO3, CO, and OCN-. The dissociation cross section of parental species was in the order of 2-7E-18 cm2. The ice temperature seems not to affect the stability for SO2 in the presence of X-rays. Formation cross sections of produced new species were also determined. Molecular half-lives at ices towards YSOs due to the presence of incoming soft X-rays were estimated. The low obtained values, employing two different models of radiation field of YSOs (TW Hydra and typical T Tauri star), reinforce that soft X-rays are indeed a very efficient source of molecular dissociation in such environments.



قيم البحث

اقرأ أيضاً

119 - G. A. Carvalho , S. Pilling 2020
In this study, we employed broadband X-rays ($6-2000$ eV) to irradiate the frozen acetone CH$_3$COCH$_3$, at the temperature of 12 K, with different photon fluences up to $2.7times 10^{18}$ photons cm$^{-2}$. Here, we consider acetone as a representa tive complex organic molecule (COM) present on interstellar ice grains. The experiments were conduced at the Brazilian synchrotron facility (LNLS/CNPEN) employing infrared spectroscopy (FTIR) to monitor chemical changes induced by radiation in the ice sample. We determined the effective destruction cross-section of the acetone molecule and the effective formation cross-section for daughter species. Chemical equilibrium, obtained for fluence $2times 10^{18}$ photons cm$^{-2}$, and molecular abundances at this stage were determined, which also includes the estimates for the abundance of unknown molecules, produced but not detected, in the ice. Timescales for ices, at hypothetical snow line distances, to reach chemical equilibrium around several compact and main-sequence X-ray sources are given. We estimate timescales of 18 days, 3.6 and 1.8 months, $1.4times 10^9-6times 10^{11}$ years, 600 and $1.2times 10^7$ years, and $10^7$ years, for the Sun at 5 AU, for O/B stars at 5 AU, for white dwarfs at 1 LY, for the Crab pulsar at 2.25 LY, for Vela pulsar at 2.25 LY, and for Sagittarius A* at 3 LY, respectively. This study improves our current understanding about radiation effects on the chemistry of frozen material, in particular, focusing for the first time, the effects of X-rays produced by compact objects in their eventual surrounding ices.
The aim of this study is to understand the chemical conditions of ices around embedded young stellar objects (YSOs) in the metal-poor Large Magellanic Cloud (LMC). We performed near-infrared (2.5-5 micron) spectroscopic observations toward 12 massive embedded YSOs and their candidates in the LMC using the Infrared Camera (IRC) onboard AKARI. We estimated the column densities of the H2O, CO2, and CO ices based on their 3.05, 4.27, and 4.67 micron absorption features, and we investigated the correlation between ice abundances and physical properties of YSOs.The ice absorption features of H2O, CO2, 13CO2, CO, CH3OH, and possibly XCN are detected in the spectra. In addition, hydrogen recombination lines and PAH emission bands are detected toward the majority of the targets. The derived typical CO2/H2O ice ratio of our samples (~0.36 +- 0.09) is greater than that of Galactic massive YSOs (~0.17 +- 0.03), while the CO/H2O ice ratio is comparable. It is shown that the CO2 ice abundance does not correlate with the observed characteristics of YSOs; the strength of hydrogen recombination line and the total luminosity. Likewise, clear no correlation is seen between the CO ice abundance and YSO characteristics, but it is suggested that the CO ice abundance of luminous samples is significantly lower than in other samples.The systematic difference in the CO2 ice abundance around the LMCs massive YSOs, which was suggested by previous studies, is confirmed with the new near-infrared data. We suggest that the strong ultraviolet radiation field and/or the high dust temperature in the LMC are responsible for the observed high abundance of the CO2 ice. It is suggested that the internal stellar radiation does not play an important role in the evolution of the CO2 ice around a massive YSO, while more volatile molecules like CO are susceptible to the effect of the stellar radiation.
Non-thermal desorption from icy grains containing H$_2$CO has been invoked to explain the observed H$_2$CO gas phase abundances in ProtoPlanetary Disks (PPDs) and Photon Dominated Regions (PDRs). Photodesorption is thought to play a key role, however no absolute measurement of the photodesorption from H$_2$CO ices were performed up to now, so that a default value is used in the current astrophysical models. As photodesorption yields differ from one molecule to the other, it is crucial to experimentally investigate photodesorption from H$_2$CO ices. We measured absolute wavelength-resolved photodesorption yields from pure H$_2$CO ices, H$_2$CO on top of a CO ice (H$_2$CO/CO), and H$_2$CO mixed with CO ice (H$_2$CO:CO) irradiated in the Vacuum UltraViolet (VUV) range (7-13.6~eV). Photodesorption from a pure H$_2$CO ice releases H$_2$CO in the gas phase, but also fragments, such as CO and H$_2$. Energy-resolved photodesorption spectra, coupled with InfraRed (IR) and Temperature Programmed Desorption (TPD) diagnostics, showed the important role played by photodissociation and allowed to discuss photodesorption mechanisms. For the release of H$_2$CO in the gas phase, they include Desorption Induced by Electronic Transitions (DIET), indirect DIET through CO-induced desorption of H$_2$CO and photochemical desorption. We found that H$_2$CO photodesorbs with an average efficiency of $sim 4-10 times 10^{-4}$ molecule/photon, in various astrophysical environments. H$_2$CO and CO photodesorption yields and photodesorption mechanisms, involving photofragmentation of H$_2$CO, can be implemented in astrochemical codes. The effects of photodesorption on gas/solid abundances of H$_2$CO and all linked species from CO to Complex Organic Molecules (COMs), and on the H$_2$CO snowline location, are now on the verge of being unravelled.
NH3 and CH3OH are key molecules in astrochemical networks leading to the formation of more complex N- and O-bearing molecules, such as CH3CN and HCOOCH3. Despite a number of recent studies, little is known about their abundances in the solid state. ( ...) In this work, we investigate the ~ 8-10 micron region in the Spitzer IRS (InfraRed Spectrograph) spectra of 41 low-mass young stellar objects (YSOs). These data are part of a survey of interstellar ices in a sample of low-mass YSOs studied in earlier papers in this series. We used both an empirical and a local continuum method to correct for the contribution from the 10 micron silicate absorption in the recorded spectra. In addition, we conducted a systematic laboratory study of NH3- and CH3OH-containing ices to help interpret the astronomical spectra. We clearly detect a feature at ~9 micron in 24 low-mass YSOs. Within the uncertainty in continuum determination, we identify this feature with the NH3 nu_2 umbrella mode, and derive abundances with respect to water between ~2 and 15%. Simultaneously, we also revisited the case of CH3OH ice by studying the nu_4 C-O stretch mode of this molecule at ~9.7 micron in 16 objects, yielding abundances consistent with those derived by Boogert et al. 2008 (hereafter paper I) based on a simultaneous 9.75 and 3.53 micron data analysis. Our study indicates that NH3 is present primarily in H2O-rich ices, but that in some cases, such ices are insufficient to explain the observed narrow FWHM. The laboratory data point to CH3OH being in an almost pure methanol ice, or mixed mainly with CO or CO2, consistent with its formation through hydrogenation on grains. Finally, we use our derived NH3 abundances in combination with previously published abundances of other solid N-bearing species to find that up to 10-20 % of nitrogen is locked up in known ices.
General results from a 3-5 micron spectroscopic survey of nearby low-mass young stellar objects are presented. L and M-band spectra have been obtained of ~50 low mass embedded young stars using the ISAAC spectrometer mounted on UT1-Antu at Paranal Ob servatory. For the first time, a consistent census of the CO, H2O ices and the minor ice species CH3OH and OCN- and warm CO gas present around young stars is obtained, using large number statistics and resolving powers of up to R=10000. The molecular structure of circumstellar CO ices, the depletion of gaseous CO onto grains in protoplanetary disks, the presence of hot gas in the inner parts of circumstellar disks and in outflows and infalls are studied. Furthermore, the importance of scattering effects for the interpretation of the spectra have been addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا