ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficiency of an enhanced linear optical Bell-state measurement scheme with realistic imperfections

66   0   0.0 ( 0 )
 نشر من قبل Christoph Simon
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compare the standard 50%-efficient single beam splitter method for Bell-state measurement to a proposed 75%-efficient auxiliary-photon-enhanced scheme [W. P. Grice, Phys. Rev. A 84, 042331 (2011)] in light of realistic conditions. The two schemes are compared with consideration for high input state photon loss, auxiliary state photon loss, detector inefficiency and coupling loss, detector dark counts, and non-number-resolving detectors. We also analyze the two schemes when multiplexed arrays of non-number-resolving detectors are used. Furthermore, we explore the possibility of utilizing spontaneous parametric down-conversion as the auxiliary photon pair source required by the enhanced scheme. In these different cases, we determine the bounds on the detector parameters at which the enhanced scheme becomes superior to the standard scheme and describe the impact of the different imperfections on measurement success rate and discrimination fidelity. This is done using a combination of numeric and analytic techniques. For many of the cases discussed, the size of the Hilbert space and the number of measurement outcomes can be very large, which makes direct numerical solutions computationally costly. To alleviate this problem, all of our numerical computations are performed using pure states. This requires tracking the loss modes until measurement and treating dark counts as variations on measurement outcomes rather than modifications to the state itself. In addition, we provide approximate analytic expressions that illustrate the effect of different imperfections on the Bell-state analyzer quality.



قيم البحث

اقرأ أيضاً

117 - N. Pisenti , C. P. E. Gaebler , 2011
Measuring an entangled state of two particles is crucial to many quantum communication protocols. Yet Bell state distinguishability using a finite apparatus obeying linear evolution and local measurement is theoretically limited. We extend known boun ds for Bell-state distinguishability in one and two variables to the general case of entanglement in $n$ two-state variables. We show that at most $2^{n+1}-1$ classes out of $4^n$ hyper-Bell states can be distinguished with one copy of the input state. With two copies, complete distinguishability is possible. We present optimal schemes in each case.
149 - Lan Zhou , Yu-Bo Sheng 2015
We describe a feasible logic Bell-state analysis protocol by employing the logic entanglement to be the robust concatenated Greenberger-Horne-Zeilinger (C-GHZ) state. This protocol only uses polarization beam splitters and half-wave plates, which are available in current experimental technology. We can conveniently identify two of the logic Bell states. This protocol can be easily generalized to the arbitrary C-GHZ state analysis. We can also distinguish two $N$-logic-qubit C-GHZ states. As the previous theory and experiment both showed that the C-GHZ state has the robustness feature, this logic Bell-state analysis and C-GHZ state analysis may be essential for linear-optical quantum computation protocols whose building blocks are logic-qubit entangled state.
381 - Y. Cai , J. Roslund , V. Thiel 2020
Measuring the spectral properties of an optical frequency comb is among the most fundamental tasks of precision metrology. In contrast to general single-parameter measurement schemes, we demonstrate here single shot multiparameter estimation at and b eyond the standard quantum limit. The mean energy and the central frequency of ultrafast pulses are simultaneously determined with a multi-pixel-spectrally-resolved (MPSR) apparatus, without changing the photonics architecture. Moreover, using a quantum frequency comb that consists of multiple squeezed states in a family of Hermite-Gaussian spectral/temporal modes, the signal-to-noise ratios of the mean energy and the central frequency measurements surpass the shot-noise limit by around 19% and 15%, respectively. Combining our multi-pixel detection scheme and the intrinsic multimode quantum resource could find applications in ultrafast quantum metrology and multimode quantum information processing.
We propose an enhanced discrimination measurement for tripartite 3-dimensional entangled states in order to improve the discernible number of orthogonal entangled states. The scheme suggests 3-dimensional Bell state measurement by exploiting composit e two 3-dimensional state measurement setups. The setup relies on state-of-the-art techniques, a multi-port interferometer and nondestructive photon number measurements that are used for the post-selection of suitable ensembles. With this scheme, the sifted signal rate of measurement-device-independent quantum key distribution using 3-dimensional quantum states is improved by up to a factor of three compared with that of the best existing setup.
A linear 50/50 beamsplitter, together with a coincidence measurement, has been widely used in quantum optical experiments, such as teleportation, dense coding, etc., for interferometrically distinguishing, measuring, or projecting onto one of the fou r two-photon polarization Bell-states $|psi^{(-)}>$. In this paper, we demonstrate that the coincidence measurement at the output of a beamsplitter cannot be used as an absolute identifier of the input state $|psi^{(-)}>$ nor as an indication that the input photons have projected to the $|psi^{(-)}>$ state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا